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Strongly Correlated 2D Quantum Phases with Cold Polar Molecules:
Controlling the Shape of the Interaction Potential
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We discuss techniques to tune and shape the long-range part of the interaction potentials in quantum
gases of bosonic polar molecules by dressing rotational excitations with static and microwave fields. This
provides a novel tool towards engineering strongly correlated quantum phases in combination with low-
dimensional trapping geometries. As an illustration, we discuss the 2D superfluid-crystal quantum phase
transition for polar molecules interacting via an electric-field-induced dipole-dipole potential.
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The outstanding feature of cold atomic and molecular
quantum gases is the high control and tunability of micro-
scopic system parameters via external fields. Prominent
examples are the realization of low-dimensional trapping
geometries and the tuning of the contact interaction via
Feshbach resonances [1]. In this Letter, we extend this
control to the shape and the strength of interactions with
the goal to generate new classes of potentials. In combina-
tion with low-dimensional trapping, these provide a frame-
work for realizing new many-body quantum phases and
phase transitions. We elaborate these ideas in the context of
bosonic polar molecules prepared in their electronic and
vibrational ground states [2].

Cold polar molecules have attracted significant theoreti-
cal interest, in particular in the context of dilute bosonic
dipolar quantum gases [3,4]. Special focus was on the
appearance of thermodynamic instabilities and roton soft-
ening for weakly interacting gases [5]; such gases have
been recently realized experimentally [6]. Below, we are
specifically interested in polar molecules in the strong
interaction limit, where the stability of the dipolar gas is
guaranteed by a confinement of the particles into a two-
dimensional (2D) setup. We show that applying appropri-
ately chosen static and/or microwave fields allows us to
design effective potentials V2P2(R) between pairs of mole-
cules [see Fig. 1(a)]. In turn, these potentials give rise to
interesting new many-body phenomena. As an illustration,
we consider the appearance of a crystalline phase, and an
associated quantum melting to a superfluid phase, for a 2D
dipolar interaction V2R(R)= D/R3. The interaction
strength is characterized by the ratio between the interac-
tion energy and the kinetic energy r, = Dm/h*a, with a
the average interparticle distance. We note that dipolar
crystals appear at high densities r4,(~1/a) > 1 and exhibit
a low energy spectrum well described by two linear sound
modes (w ~ ¢g). In contrast, a (Coulomb) Wigner crystal
appears at low densities and exhibits a phonon mode with a
dispersion @ ~ ¢'/2 [7]. We determine the transition point
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rom = 18 = 4 of this superfluid to solid quantum phase
transition via path integral Monte Carlo (PIMC) simula-
tions. We find that realistic experimental parameters of
polar molecules allow for the realization of this quantum
phase, which has never been observed so far with cold
atomic or molecular gases.

We consider heteronuclear molecules prepared in their
electronic and vibrational ground states. We focus on
bosonic molecules with a closed electronic shell 12 (v =
0), e.g., of the type SrO, RbCs, or LiCs, as most relevant in
the present experiments [2]. The Hamiltonian for a single
molecule i is H? = p?/2m + Vieap(r;) + Hr((’))t - d;E().
The first two terms are the kinetic energy and the trapping
potential for the center-of-mass motion of the molecule of
mass m, respectively. The term Hﬁ(’,)t describes the internal
low energy excitations of the molecule, i.e., the rotational
degree of freedom of the molecular axis. This term is well

described by a rigid rotor Hr(('))t = BJ?, with B the rotational
constant (in the few to tens of gigahertz regime) and J; the
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FIG. 1 (color online). (a) Effective potentials: dipole potential
induced by a static electric field Vezf? = D/R3 (solid line);
potential with a single microwave transition with /A = 0.1
(dashed line); attractive potential induced by an additional
microwave coupling to the states |1, =1) with A; = 100A and
Q, /A, = 0.3 (dashed-dotted line). (b) Contour plot of the
potential V(r)3 /D [Eq. (1)] in the (R, z) plane. The semiclas-
sical tunneling trajectory is shown as a dashed line.
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dimensionless angular momentum. The rotational states
|J, M) with quantization axis z and with eigenenergies
BJ(J + 1) are coupled by a static or microwave field E
via the electric dipole moment d; (typically of the order of
a few Debye). We assume a setup where the molecules are
confined to a 2D configuration in the x, y plane by a tight
harmonic trapping potential ma)ﬁ_zl2 /2, with o =
h/ma’, as provided by an optical potential. We remark
that the different dynamic polarizabilities parallel and
perpendicular to the molecular axis give rise to tensor
shifts, which provide an additional (small) state-dependent
potential for excited rotational states [8].

The interaction of two polar molecules at distance r =
Ir| = |r; — ry| is described by the Hamiltonian H =
212:1 HY + V44, with the dipole-dipole interaction Vyy =
[d,;d, — 3(d;n)(d,yn)]/r* and n = r/r as the unit vector
[3]. In the absence of external fields E, the interaction of
two molecules in their rotational ground state is deter-
mined by the van der Waals attraction V,gw ~ —Cg/7°,
with Cg = d*/6B, valid outside of the molecular core re-
gion r>r,,, = (d?/B)'/3. By dressing with an external field
E, we induce and design long-range interactions. On a for-
mal level, the derivation of the effective interaction pro-
ceeds in two steps. (i) We derive a set of Born-
Oppenheimer (BO) potentials by first separating into
center-of-mass and relative coordinates and diagonalizing
the Hamiltonian for the relative motion for fixed molecular
positions r, H = Zi:LZ(Hr((’,)t d;E) + V4. Within an
adiabatic approximation, the corresponding eigenvalues
play the role of an effective V 2(r) interaction potential
in a given state manifold dressed by the external field.
(i) We eliminate the motional degrees of freedom in the
tightly confined z direction to obtain an effective 2D
dynamics with interaction V (R) This elimination 1s
valid only for large distances, where |V3R(r)| < 1?/ma?;
see below. In the following, we consider the cases of a
static field and a microwave field.

A static electric field applied perpendicular to the trap
plane E = E e, polarizes the rotational ground state of
each molecule and induces finite dipole moments (d;) =
VDe,. These give rise to a long-range dipole-dipole inter-
action V3R(r) = D(r* — 3z%)/r°, where D is tunable by
the field strength E_ [9]. This expression of interacting
dipoles aligned by the external field is valid for distances
larger than r > r,, with r, defined by C¢/r§ ~ D/r3.
Furthermore, for r > r,,, the BO approximation is easily
fulfilled. The combination of the dipole-dipole interaction
and the transverse trapping potential implies a potential
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with |, = (Dm/2h*a)"5a [see Fig. 1(b)] and where we
require | >> max(ry, rry). The above potential has a
saddle point at R; = 1.28/, and z; = *0.64[, with the po-
tential height V; = 0.34D/ li. As a consequence, the short
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distance regime r <[ is separated by a potential barrier
from the large distance regime r > [ . Within a semiclas-
sical approximation, the tunneling rate through this barrier
takes the form I' = w, exp[ —c(Dm/2h%a)*?], with ¢ =

586 and w,~ JD/ma®> the “attempt frequency.”
Therefore, in the strongly interacting limit with a tight
confinement, the tunneling rate is exponentially sup-
pressed, and the probability to find two particles at a
distance r <[ is negligible and guarantees the stability
of an ensemble of polar molecules. Then the system is
completely determined by the interaction potential at large
distances r >> [ |, which is, in particular, also much larger
than the short distances scales 7, 7. Thus, we can reduce
the interaction to an effective 2D potential by integrating
out the fast transverse motion as

VR(R) = ] dz, f dol Pl L ) PVRE), @)

where ¢ (z;) = exp(—z2/2a%)/(ma?)"/* is the ground
state harmonic oscillator wave function in the tightly con-
fined z direction and is valid for distance R > (D/hw | )'/3
[note that [, ~ (D/hw )/ for realistic parameters].
Therefore, the effective 2D interaction reduces to ng'? ~
D/R? for large separations R > [| >> ry, 7',
Microwave fields can drive the transition of a molecule
from the ground to the first excited rotational state. We
denote the corresponding Rabi frequency by () and the
detuning by A. In the weak driving limit ) <A, the
molecules are essentially in their rotational ground state
with ac Stark shifted energy and a small admixture from
the excited state. For two molecules approaching each
other and blue detuning A > 0 (cf. Fig. 2), the microwave
field will be resonant at distance R, with d>/R3 ~ hA; i.e.,
the ground and first excited rotational states will be
strongly mixed. This gives rise to an effective BO poten-
tial, which for r < R, exhibits a strong repulsion inherited
from the ~1/r excited state dipole-dipole interactions.
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FIG. 2 (color online). (a) Energy levels of the rotor in a weak
electric field. The microwave transition with detuning A and
Rabi frequency (2 is shown as the arrow. (b) BO potentials for
the internal states for Q =0, where |g;e)s = (lg;e) =
le; g))/+/2 denote the first excited states. (c) Avoided level
crossing due to the microwave coupling with the effective BO
potential V22 given by the highest eigenenergy state.
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Similar ideas have been discussed as a ““blue shield” in the
context of alkali atoms [10].

As an example, we consider a microwave field with
polarization along the z axis, driving the transition between
the ground state and the first excited state with M = 0.
Excitations into higher states are suppressed due to the
anharmonicity of the spectrum, and spontaneous emission
is irrelevant in the microwave regime. The interaction
Hamiltonian also couples the excited state |1,0) to the
states |1, 1) for nonvanishing z (note that such a coupling
can also be induced by the tensor shift). In the following,
we suppress this coupling by introducing a (weak) static
electric field E, << B/d, lifting the degeneracy of the J =
1 manifold by & > A [see Figs. 2(a) and 2(b)], and we
focus on distances r > rs = (d?/h8)'/3. For each polar
molecule, the system reduces to a two level system with
the ground state |g) and the first excited state |e) (M = 0)
dressed by the electric field and energy difference Zw,. In a
rotating frame, the Hamiltonian H, expressed in the basis

{lg; g0 lgs e), le; g), le; e)} becomes

0o 0 Q 0
Q -A Dur) Q
Q Dvr) -A Q
0o Q Q  —2A

Hy=nh + (W, (3)

where W denotes a diagonal matrix with the entries
{D,, /D;D,, \/D;D,, D} accounting for the weak dipole
interaction induced by the static field E,, with D, =
[(gld;|g)|?> and D, = [{e|d;|e)|?, while D =~ d?/3 accounts
for the dipole transition element between the ground and
excited state, and »(r) = (r> — 3z%)/hr’ is the shape of the
dipole interaction. The effective BO potential V2R(r) de-
rives now from the eigenenergy of the state adiabatically
connecting to |g, g) for r — oo and is given by the highest
energy level; see Fig. 2(c). We find that for a detuning A
with Ry = (D/hA)'/3 > [, = rs the combination of the
transverse trapping potential with ng? provides again a
large tunneling barrier separating the short distance regime
from the long distance regime. We emphasize that the
existence of this barrier makes the system stable—in con-
trast to the incomplete shielding discussed previously in
the context of blue shielding with lasers [10]. Then, in
analogy to the discussion of the static electric field, we
obtain the effective 2D potential via integrating out the
transverse motion; the effective potential ng]? is shown in
Fig. 1(a). The distance R separates a weakly interacting
regime at large distances R >Ry, with V2R~
[(202?/A*)D + D,]/R?, from a strongly repulsive regime,
with V2R ~ D/R® on distances [} < R <R,,.

The BO approximation above is valid as long as the
passage through the level crossing at R is adiabatic. For a
realistic setup with average interparticle distance a ~ Ry,
the average particle velocity can be estimated as i/Rym.
Then the Landau-Zener probability for a diabatic crossing
reduces to Py, = exp[ —2m(DmQ?/h*RyA?)], and the BO
approximation is valid for A2/Q? < Dm/h’R,. This con-

dition competes with the weak coupling constraint
0?/A? < 1. However, for /A ~ 0.1, both conditions can
be satisfied for strong dipole interactions with r; > 100.

The use of additional microwave fields coupling to the
|1, £1) states with detuning A | > A and Rabi frequency
)| allows for further shaping of the effective potentials.
One such example is shown in Fig. 1(a), where V2R in the
long-range part R > R, becomes attractive and allows for
the existence of bimolecular bound states.

The above discussion provides the microscopic jus-
tification for studying an ensemble of polar molecules in
2D interacting via (modified) dipole-dipole potentials. The
general many-body Hamiltonian reads [11]

2
P;
H= Z% + > VR(R; - R)). )

i<

The first term accounts for the kinetic energy within the
x, y plane, while the second term denotes the effective
interaction potential with the strong repulsion ~D/R3 on
short distances r < Rj; see above. The validity of this
effective Hamiltonian requires that tunneling events
through the barrier of the interparticle potential are sup-
pressed, i.e., strong interactions and tight confinement with
Dm/h*a; > 1. In turn, for decreasing interactions, tun-
neling through the barrier takes place, and three-body
recombinations become relevant, driving a crossover into
a potentially unstable regime (note that the approach to-
wards this intermediate region from the weakly interacting
side has been previously discussed [5]). The Hamiltonian
equation (4) gives rise to novel quantum phenomena,
which have not been accessed so far in the context of
cold atoms or molecules. As an illustration, we focus on
the interaction V22(R) = D/R®. We present a tentative
phase diagram of the system (see Fig. 3) and show that
for realistic experimental parameters the polar molecules
can be driven from the superfluid into the crystalline phase.
Here the dimensionless parameter r, equals r, = Dm/h*a
and the particle density is n = 1/a’.

In the limit of strong interactions r; >> 1, the polar
molecules are in a crystalline phase for temperatures 7' <
T,., with T,, = 0.09D/a® [12]. The configuration with
minimal energy is a triangular lattice with spacing a; =
(4/3)'/*a. The excitations are two linear sound modes with
characteristic phonon frequency w, =+/D/ a’m. The
static structure factor S diverges at a reciprocal lattice
vector K, and S(K)/N acts as an order parameter for the
crystalline phase. In the opposite limit of weak interactions
ry <1, the ground state is a superfluid (SF) with a finite
(quasi)condensate. The SF is characterized by a superfluid
fraction p,(T), which depends on temperature 7T, with
p(I' =0)=1. For finite temperature, a Berezinskii-
Kosterlitz-Thouless transition towards a normal fluid is
expected to occur at Txr = 7p h*n/2m. In turn, very little
is known on the intermediate strongly interacting regime
with r; = 1; see [13] for a discussion in 1D. Here we focus
on this intermediate regime and determine the critical
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FIG. 3 (color online). (a) Tentative phase diagram in the T —
rq plane: crystalline phase for interactions r; > rqy and tem-
peratures below the classical melting temperature 7,, (dashed
line). The superfluid phase appears below the upper bound T <
mh?n/2m (dotted line). The quantum melting transition is
studied at fixed temperature 7 = 0.014D/a’® with interactions
ry; = 5-30 (dashed-dotted line). The crossover to the unstable
regime for small repulsion and finite confinement w | is indi-
cated (hatched region). (b) PIMC snapshot of the mean particle
positions in the crystalline phase for N = 36 at r; = 26.5.
(c) Density-density (angle-averaged) correlation function g,(r),
for N = 36 at r; ~ 11.8. (d) Superfluid density p, and (e) static
structure factor S(K)/N as a function of r,, for N = 36 (circles)
and N = 90 (squares).

interaction strength rqy for the quantum melting transi-
tion. We use a recently developed PIMC code based on the
worm algorithm [14]. In Figs. 3(d) and 3(e), the order
parameters p, and S(K)/N are shown at a small tempera-
ture T = 0.014D/a? for different interaction strengths r,
and particle numbers N = 36, 90. We find that p, exhibits
a sudden drop to zero for r; = 15, while at the same
position S(K) strongly increases. In addition, we observe
that on a few occasions p, suddenly jumped from O to 1,
and then returned to 0, in the interval r; = 15-20, which
suggests a competition between the superfluid and crystal-
line phases. These results indicate a superfluid to crystal
phase transition at rgy = 18 = 4. The steplike behavior of
ps and S(K)/N is consistent with a first order phase
transition. For r; > rqy;, the crystalline structure is trian-
gular, in agreement with the discussion above; see
Fig. 3(b). Note that the superfluid with r; ~ 1 is strongly
interacting; in particular, the density-density correlation
function is quenched on lengths R < a; see Fig. 3(c).
Moreover, the (quasi)condensate involves a fraction of
the total density, and, therefore, small coherence peaks in
a time of flight experiment are expected. However, the
detection of vortices can be used as a definitive signature
of superfluidity, while Bragg scattering with optical light
allows for probing the crystalline phase.

While many of the molecular species studied at present
in the lab are candidates for observing the above phe-
nomena, we note that, e.g., SrO has a large dipole moment
d = 8.9 Debye and allows optical trapping with a red
detuned laser with wavelength A ~ 1 pum. Then, for a
trapping potential with a; ~ 50 nm and interparticle dis-
tance a ~ 300 nm, we obtain r; ~ 410 > rqy, and the
tunneling rate is suppressed with d’m/h%a; ~ 2500
(lower values of r; are obtained by tuning the electric
field). Since the classical melting occurs at T,,(r; =
400) ~ 2 wK, this molecule is a candidate to reach the
quantum regime [15].
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