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We report the results of fluid transport experiments in aqueous foams under microgravity. Using optical
and electrical methods, the capillary motion of the foam fluid and the local liquid fractions are monitored.
We show that foams can be continuously wetted up to high liquid fractions (�0:3), without any bubble
motion instabilities. Data are compared to drainage models: For liquid fractions above 0.2, discrepancies
are found and identified. These new results on foam hydrodynamics and structure can be useful for other
poroelastic materials, such as plants and biological tissues.
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Aqueous foams, emulsions, as well as some gels, plants,
and biological tissues are poroelastic materials: They are
all fluid-infiltrated elastic cellular materials. In such soft
and porous materials, the local liquid content and pore size
are coupled to the elasticity of the matrix. Macroscopic
motions (swelling or shrinking, for instance) are related to
pressure gradients in the interstitial fluid, which conse-
quently induce diffusive fluid transport [1,2]. In the case
of aqueous foams, the bubbles are packed and deformed,
and the liquid is confined in a network of interstitial
channels [plateau borders (PBs)], interconnected by four
at nodes, with the cross sections of these PBs and nodes
depending on the liquid content " [3,4]. The fluid in the
PBs irreversibly flows (drainage), as a response to gravity
and capillarity [5–7]. Foam drainage has been widely
studied and is rather well understood; nevertheless, our
understanding is not complete, especially as both experi-
ments and models are limited to the range of low " (" �
0:15 for experiments, and " � 0:10 for theory [5–8]).
Indeed, when forcing liquid into a foam to make it wetter,
convective instabilities occur [9,10], preventing access to
high ", which thus remain poorly understood. Besides the
gravitational contribution, a capillary flow occurs in the
case of a liquid fraction gradient: This implies a gradient in
the fluid pressure PL, tending to bring liquid from wet
(high PL) to dry parts of the foam (low PL). Considering
only these capillary effects, the situation in a foam thus
resembles the one in plants and tissues: Liquid pressure
gradients can induce an isotropic fluid flow, coupled to
macroscopic strains via the elasticity of the solid matrix
(for foams, the elastic modulus is set by �=D, with � the
surface tension and D the bubble diameter [3,4]).

Studying capillary flows in foams can thus be an inter-
esting approach to investigate the general features of fluid
transport in soft and porous materials. Understanding the
hydrodynamics across poroelastic materials is an impor-

tant issue to elucidate the origins and speed of observed
natural movements [2], as well as for the development of
hydraulically actuated soft systems and microfluidic de-
vices. Using aqueous foams as a model system has some
advantages: Experimental methods to measure local liquid
fraction and models are already well developed. Micro-
gravity conditions offer the opportunity to study solely
capillary flows in foams. Attempts to decouple gravita-
tional and capillary effects on the ground have been per-
formed [11,12], but they remain always limited to low "
due to convective instabilities. In this Letter, we present
fluid imbibition experiments in foams under microgravity.
We show here that " � 0:3 can be obtained when capil-
larity is the driving force. We then compare data to the
classical drainage equations, in which gravity is set to zero,
and discuss the validity of these equations throughout the
liquid fraction range. In terms of the permeability of po-
rous materials, we show that these new results allow us to
fill the gap between systems of highly packed and de-
formed bubbles and systems of close-packed rigid spheres.

The experiments were performed during a parabolic
flight campaign organized by the French space agency
(CNES), providing 90 parabolas. For each parabola, 20 s
of microgravity (g� 0:1 m s�2) are obtained, in between
two equal periods of hypergravity (g� 18 m s�2). A nor-
mal gravity phase separates each parabola, lasting one or
two minutes. Imbibition experiments are performed inside
a transparent cell (height H � 30 cm, width W � 25 cm,
thickness T � 3 cm). The foam is made by bubbling air
into a surfactant solution through a porous glass frit. This
provides a mean bubble diameter D � 3:2 mm, with a
polydispersity lower than 20%. The surfactant aqueous
solution is a mixture of sodium dodecyl sulfate (at 8 g=l)
and dodecanol (at 0:3 g=l), providing a surface tension
� � 32 mN=m and a high bubble surface viscoelasticity.
The experiment principle consists in injecting continuously
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the same surfactant solution inside the foam, in the center
of the cell, at flow ratesQ varied from 4 to 80 ml=min. The
injection starts at the beginning of the microgravity phase.
Because of the previous hypergravity, the foam is always
initially drained "0 � 0:003. AsD< T � H;W, this setup
corresponds to a 2D propagation inside a 3D foam. To
monitor the variations of " in time and space, we have
coupled electrical conductometry and light transmission
measurements. A set of 24 electrodes is placed on each cell
side, forming a cross centered on the injection point
(Fig. 1). Thanks to a calibration between " and the foam
conductivity, the absolute liquid fraction is inferred [13].
The foam is also uniformly illuminated from one side, and
a digital camera records the transmitted light: In the limit
of multiple scattering, the wetter the foam, the darker it
looks [14]. This technique is accurate for the detection of
fluid front positions [7]. Note finally that previous imbibi-
tion studies in microgravity either dealt only with one layer
of bubbles (2D foams) [15,16] or were still preliminary
with 3D foams (focusing only on the front position) [17].

Many theoretical aspects of imbibition experiments in
microgravity have been discussed in Ref. [18], starting
from the drainage equations developed for ground experi-
ments. These equations describe the time and space evo-
lution of ". A key point is that, depending on the bubble
surface mobility M, different equations are found [18].
This surface mobility, initially introduced in Ref. [19],
describes the coupling between flows inside the PBs and
at their surfaces and is represented by a dimensionless
number M � �r=�s, where � is the bulk viscosity, �s
is the surface shear viscosity, and r is the PB radius of
curvature [19,20]. The latter, for " < 0:1, can be written
r � L

���
"
p
=�, introducing the PB length L (� � 0:41 and

D � 2:7L for a Kelvin-type cell [4,5]). To model micro-
gravity, the gravity term is removed in the equations, and
one can write (the operators act on spatial coordinates)
[18]:
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For low mobility M, s � 0:5 and the viscous dissipation
takes place mainly within the PBs, while s � 0 corre-
sponds to high mobility and high hydrodynamic resistan-
ces in the nodes [5,18]. In the case of liquid injection at a
continuousQ, and for s � 0:5 (as expected for our solution
[7]), one can find a solution for our experimental geometry
(for the spatial coordinates, the cylindrical symmetry im-
plies that only the radial distance R is needed):

 � � �Q2=3f� �R�t�1=2 �Q�1=6	; (2)

with �R � R=L, �t � tKr��=�L, and �Q � Q�=Kr��LT.
The dimensionless Kr is the foam permeability, which
depends on M [7,20]. The function f�x	, describing the
liquid fraction profile along a radius, verifies x2f0�x	 

2�xf0�x	f�x	1=2�0 � 0. There is no analytical solution for
f; numerically, it is found that f is a smoothly decreasing
function (plotted in the inset in Fig. 3), with f�x � 1:6	 �
0. Thus, at any time, there is a well-defined maximum
distance Rf, covered by the fluid corresponding to f � 0
(Rf is called the front radius, though the shape of f does
not strictly describe a front). In dimensional values, Rf is
given by (for low M):

 Rf � 0:8K1=3
r Q1=6t1=2: (3)

Also, it is found numerically that for a given t and R, "�
Q4=5 and "�Q for low and high interfacial mobilities,
respectively.

Figure 1 shows pictures in transmission of the foam at
different times: in white is the initial dry foam, and in dark
the wetted foam. The fluid propagation turns out to be
isotropic: The contour of the wet part of the foam is always
a circle, at any time and any flow rate Q. The front radius
Rf is quantitatively determined by analyzing the intensity
profile and by locating the frontier with the background
level at "0. Rf changes only with t and withQ, as shown in
Fig. 2. For any Q, we find Rf � At1=2, in agreement with
Eq. (3), evidencing a diffusive transport. In the inset in
Fig. 2, we have fitted with a power law the Q dependence
of the prefactor A: An exponent 0.2 is found, close to the
predicted value (1=6). The small discrepancy might be due
to the low Q data for which the front radius is not big
enough when compared to T, resulting in a not perfectly
2D situation.

We then extract from Fig. 2 the permeability Kr using
Eq. (3): Kr � 11:0
 2� 10�3, in good agreement with
other results and implying M � 0:17 [7,20]. We fi-
nally estimate a surface shear viscosity �s of about

 

FIG. 1. Images in transmission at t � 4, 7, 13, and 17 s after
liquid injection at the center at t � 0 s. The white background is
the initial dry foam ("0 � 0:003), and the foam is dark when
wetted; at the front, the constant liquid fraction is �0:005,
slightly above "0. The dark cross corresponds to the conductivity
electrodes and wires placed along two perpendicular directions.
Image height � 12 cm and width � 15 cm.
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10�6 kg s�1, close to other estimates [7,21,22]. For this
front propagation, and thus for " < 0:01, data agree with
the zero gravity equations, as also found in Ref. [17]. It is
worth noting that, even if only capillarity is acting, the
agreement between the models and data shows that the
bulk-surface flow coupling is still valid and independent of
the driving forces.

For any Q and at different t, the liquid fraction radial
profiles can be constructed from the conductivity measure-
ments, evidencing a smooth and curved shape, qualita-
tively similar to the predicted one (Fig. 3). The electrical
measurements confirm that the propagation is isotropic, as
no significant differences are found between perpendicular
radii. Under these low gravity conditions, it is found that
one can wet the foam continuously up to very high " ("�
0:3, at the electrode closest to the injection, for the highest
Q). Thus, such experiments allow us to investigate for the
first time hydrodynamics in foams of high ". This wetting
is obtained without any bubble motion or structure insta-
bilities. Performing similar liquid injection experiments on
the ground, at this bubble size, a critical fraction of 0.1 is
found, above which the foam structure is destabilized [9].
The important difference between the ground and these
experiments is the sharpness of the " gradient, meaning
that the rate at which " changes is quite different. The time
� associated with the front and corresponding to the com-
plete PB opening (� > 10 s here, and typically�1 s on the
ground [5]) might be an important parameter controlling
the onset of bubble position instability. If the flow rate is
too high (above the instability threshold), implying too
short a �, the foam can no longer accommodate the gra-
dient, and the structure gets destabilized in order to trans-
port the fluid at the imposed flow rate. This qualitatively
fits with the fact that the instability occurs at lower " for

bigger D (increasing D implies a sharper front) [9]. It is
then tempting to make an analogy with instabilities seen in
plants, where there is a minimal time for hydraulically
swelling motion, above which instabilities also occur to
allow faster motion [2].

Figure 4 shows the liquid fraction dependence withQ, at
a radius R � 1 cm and at different times (the same trends
are found at other R). It is possible to adjust the points with
power law curves (dashed lines), and we find an exponent
� 1 for the short times (low ") and closer to 0.75 for the
longest times (high "). As already stated, models provide
"�Q4=5 orQ, depending on the mobilityM. So, simply in
terms of exponents, the measurements are consistent with
the model. Note, though, that, despite different equations
for s � 0 and s � 0:5, the predictions are quite similar
and might be difficult to discriminate experimentally.
Quantitatively, we can compute the liquid fraction evolu-
tion using Eq. (2), with the value Kr previously measured.
We must recall that the model is valid only for dry foams,
based on the assumption that the fluid is mainly within the
PBs [4,5]. However, for " > 0:10, the node volume is no
longer negligible. Results of the simulations are also shown
in Fig. 4: As expected, for " � 0:10, we find a good
quantitative agreement, but discrepancies occur as the
liquid fraction increases. The discrepancy is also seen
when trying to collapse the radial profiles of Fig. 3: All
of the data points should collapse on the theoretical curve
when plotting " �Q�2=3 vs �R�t�1=2 �Q�1=6 [Eq. (2)]; a devia-
tion, much bigger than the experimental precision (Fig. 3
inset), is found at the highest ", as in Fig. 4. By analyzing
for the first time the high " and the behavior above the front
(not done in Ref. [17]), we have thus found limits of the
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drainage equations; the observed discrepancy means that
the model overestimates the permeability. Forcing the
agreement with the model implies that Kr decreases con-
tinuously down to �5� 10�3. This low value, below the
theoretical limit of 6:6� 10�3 for M � 0, and the fact that
Kr decreases with " (while it is expected to increase) also
confirm that the model built for dry foams is not adapted
and that not only the dissipation in the PBs must be taken
into account for wet foams. However, it is instructive to
compare the permeability value found here at the highest
" > 0:25 to the one of a close-packed bed of rigid spheres:
For a fcc packing (" � 0:26), Koehler et al. report that the
permeability k can be written k � 1:4� 10�3L2 [5].
Expressed with Kr, one gets Kr � k=�"L2	, and then a
value of Kr � 5:4� 10�3 is predicted, actually close to
our measured value. So, quantitatively, while at low " the
drainage equation well predicts the permeability, it be-
comes finally better described by a model of nondeformed
packed spheres at the highest ", showing that our data
actually span over the whole range of possible packing.

In conclusion, we report here microgravity results of
imbibition experiments in 3D foams, where the flow is
due only to capillary pressure gradients. In the range of
low liquid fractions, especially for the front propagation,
we have found a good agreement between data and the
drainage equation with g � 0. In that range, this theoreti-
cal framework developed for foams should be useful for
any other soft and porous materials. However, as the liquid
fraction increases, the limits of the model are well evi-
denced and are due to the failure of geometrical assump-

tions (neglecting the increased volume of the nodes). When
the foam is wetted only by capillarity, it is a sufficiently
smooth process, so that high liquid fractions can be
reached, and no bubble structure instabilities are found.
We have thus collected new and original data, increasing
our understanding not only on foams but also on fluid
transport in poroelastic materials and to which future mod-
els of such materials at high fluid contents could be
compared.
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