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Recent simulations have predicted that near jamming for collections of spherical particles, there will be
a discontinuous increase in the mean contact number Z at a critical volume fraction ¢.. Above ¢, Z and
the pressure P are predicted to increase as power laws in ¢ — ¢... In experiments using photoelastic disks
we corroborate a rapid increase in Z at ¢, and power-law behavior above ¢, for Z and P. Specifically we
find a power-law increase as a function of ¢ — ¢, for Z — Z,. with an exponent B around 0.5, and for P
with an exponent ¢ around 1.1. These exponents are in good agreement with simulations. We also find
reasonable agreement with a recent mean-field theory for frictionless particles.
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A solid, in contrast to a fluid, is characterized by me-
chanical stability that implies a finite resistance to shear
and isotropic deformation. While such stability can origi-
nate from long-range crystalline order, there is no general
agreement on how mechanical stability arises for disor-
dered systems, such as molecular and colloidal glasses,
gels, foams, and granular packings [1]. For a granular
system, in particular, a key question concerns how stability
occurs when the packing fraction ¢ increases from below
to above a critical value ¢, for which there are just enough
contacts per particle Z to satisfy the conditions of mechani-
cal stability. In recent simulations on frictionless systems it
was found that Z exhibits a discontinuity at ¢, followed by
a power-law increase for ¢ > ¢, [2—5]. The pressure is
also predicted to increase as a power law above ¢..

A number of recent theoretical studies address jamming,
and we note work that may be relevant to granular systems.
Silbert, O’Hern et al. have shown in computer simulations
of frictionless particles [2—4] that (a) for increasing ¢, Z
increases discontinuously at the transition point from zero
to a finite number, Z,., corresponding to the isostatic value
(needed for mechanical stability), (b) for both two- and
three-dimensional systems, Z is expected to continue in-
creasing as (¢ — ¢.)? above ¢, where 8 = 0.5, (c) the
pressure P is expected to grow above ¢, as (¢ — ¢.)?,
where ¢ = a; — 1 in the simulations, and a/ is the ex-
ponent for the interparticle potential. More recent simula-
tions by Donev et al. for hard spheres in three dimensions
found a slightly higher value for 8, 8 = 0.6, in maximally
random jammed packings [5]. It is interesting to note that a
model for foam exhibits quite similar behavior for Z [6].
Henkes and Chakraborty [7] constructed a mean-field the-
ory of the jamming transition in 2D based on entropy
arguments. These authors predict power-law scaling for
P and Z in terms of a variable «, which is the pressure
derivative of the entropy. By eliminating «, one obtains an
algebraic relation between P and Z — Z_. from these pre-
dictions, which we present below in the context of our data.
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While the simulations agree among themselves at least
qualitatively, so far, these novel features have not been
identified in experiments. Hence, it is crucial to test these
predictions experimentally. In the following, we present
experimental data for Z and P vs ¢, based on a method that
yields accurate determination of the contacts and identifies
power laws in Z and P for a two-dimensional experimental
system of photoelastic disks. By measuring both P and Z,
we can also obtain a sharper value for the critical packing
fraction ¢, for the onset of jamming, and we can test the
model of Henkes and Chakraborty.

The relevant simulations have been carried out predomi-
nantly for frictionless particles. For real frictional particles
there will clearly be some differences. For instance, in the
isostatic limit, Z equals 4 for frictionless disks, whereas for
frictional disks, Z is around 3, depending on the system
details [8]. Other predictions such as specific critical ex-
ponents may also need modification. However, one might
hope that the observed experimental behavior, in particu-
lar, critical exponents, might be similar to that for friction-
less particles if the frictional forces are typically small
relative to the normal forces. Indeed, in recent experi-
ments, the typical intergrain frictional forces in a physical
granular system were found to be only about 10% of the
normal forces [9].

Figure 1(a) shows a schematic of the apparatus. We use a
bidisperse mixture (80% small and 20% large particles) of
approximately 3000 polymer (PSM-4) photoelastic (bire-
fringent under stress) disks with diameter 0.74 or 0.86 cm.
This ratio preserves a disordered system. The disks have
Young’s modulus of 4 MPa, and a static coefficient of
friction of 0.85. The model granular system is confined in
a biaxial test cell (42 cm X 42 cm with two movable
walls) which rests on a smooth Plexiglas sheet. The dis-
placements of the walls can be set very precisely with
stepper motors. The linear displacement step size used in
this experiment is 40 wm, which is approximately 0.005D,
where D is the average diameter of the disks. The defor-
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FIG. 1 (color online). (a) Schematic cross section of biaxial
cell experiment (not to scale). Two walls can be moved inde-
pendently to obtain a desired sample deformation. (b) Examples
of contacts and particles that are either close but not actually in
contact, or contacts with very small forces. Circles show true
contacts, squares show false apparent contacts. (c) Image of a
single disk at the typical resolution of the experiment.
(d) Sample image of highly jammed/compressed state and
(e) almost unjammed state.

mation & per particle is less than 1% in the compressed
state. The setup is horizontal and placed between crossed
circular polarizers. It is imaged from above with an § MP
CCD color camera which captures roughly 1200 disks in
the center of the cell, enabling us to visualize the stress
field within each disk (Fig. 1). We then obtain good mea-
surements of the vector contact forces (normal and
tangential = frictional components) [9].

We also use the particle photoelasticity to accurately
determine the presence or absence of contacts between
particles. In numerical studies one can use a simple overlap
criterion to determine contacts: a contact occurs if the
distance between particle centers is smaller than the sum
of the particle radii. However, in experimental systems, a
criterion based solely on the particle centers is susceptible
to relatively large errors which include false positives
[Fig. 1(b) (squares)] as well as false negatives (circles).
As seen in Fig. 1(b), the contacts through which there is
force transmission appear as source points for the stress
pattern. Further details are given in Sec. I of the supple-
mentary material [10].

We use two protocols to produce different packing frac-
tions: we either compress the system from an initially
stress-free state, or decompress the system until the end
state is essentially a stress-free state. The results for both
protocols are the same within error bars above ¢,; below
jamming, the data for Z obtained by compression are a few
percent below those for decompression. Below, we will
present decompression data. Figures 1(d) and 1(e) show the
initial highly stressed state and the end state after decom-
pression, respectively. After each decompression step, we
apply tapping to relax stress in the system. This could be
seen as roughly analogous to the annealing process in-
voked in some simulations. Two images are captured at

each state: one without polarizers to determine the disk
centers and one with polarizers to record the stress.

The average Z can be computed either by counting only
the force bearing disks or by counting all the disks includ-
ing rattlers which do not contribute to the mechanical
stability of the system. We consider as rattlers, all the disks
which have less than two contacts. For the number of
rattlers beyond the transition point we find an exponential
decrease with ¢ — ¢_; hence, a divergence in the number
of rattlers at ¢, is not indicated by the data.

We next compute the Cauchy stress tensor for each disk,
oi; =55 >.(Fix; + Fjx;); P is the trace of this tensor.
Here, A is the Voronoi area for the given disk, and the
sum is taken over contacts for a given disk. We then
compute the average of the pressure over the ensemble of
disks in the system. For the data presented below, we
performed two sets of experiments: one with a larger range,
0.8390 = ¢ = 0.8650, and also larger step size, A¢p =
0.016, and, after the jamming region was identified, a
second set at a finer scale with 0.840745 = ¢ =
0.853312, with a step size, A¢ = 0.000324.

The inset in Fig. 2 shows data for Z over a broad range of
¢ [with rattlers (stars); without (squares)]. These data
show a significant rise in Z at the jamming transition.
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FIG. 2 (color online). Average contact number and pressure at
the jamming transition. Top and bottom panels show Z — Z_. and
P vs ¢ — ¢,, respectively, with rattlers included (stars) or
excluded (diamonds). Dashed and full curves in the top panel
give power-law fits (¢ — ¢ )P with 8 = 0.495 and 0.561 for the
case with and without rattlers, respectively. Full curve in the
lower panel gives the fit (¢ — ¢.)¥ with ¢ = 1.1; dashed line
shows a linear law for comparison. Inset: Z vs ¢ for a larger
range in ¢.
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While this rise is not sharply discontinuous, it occurs over a
very small range in ¢. At higher ¢, the variations of the
curves are similar with and without rattlers. At lower ¢,
their behavior differs: The values of Z drop lower for the
case with rattlers. The pressure P(¢ — ¢.) in Fig. 2 shows
a flat background below jamming, and then a sharp positive
change in slope at a well defined ¢. The pressure is not
identically zero below jamming for similar reasons that the
jump in Z is not perfectly sharp, as discussed below.

To compare these experimental results to predictions
above ¢, we carry out least squares fits of Z — Z_. and P
to ¢ — ¢.. These fits depend on the choice of ¢, which
has some ambiguity due to the rounding; the data allow a
range from around 0.840 to 0.843. In fact, ¢, can be
determined in several ways: the point where Z reaches 3,
the point where P begins to rise above the background, etc.
(cf. Ref. [10]). We show results of these fits in Fig. 2,
starting with the upper panel, which shows power-law fits
(Z—2Z.) « (¢ — ¢.)P. The fitted exponent 8 depends on
the choice of ¢, but the variation is small without rattlers,
0.494 = B = 0.564, and somewhat larger with rattlers,
0.363 = B = 0.525. The details for several different spe-
cific fits are given in Sec. II of Ref. [10]. The point ¢, =
0.84220 where P rises above the background level is used
in Fig. 2, and yields a consistent fit for both P and Z. The
point where Z reaches 3 for the case without rattlers agrees
with the previous case to within d¢,. = 0.0005, and the
exponents are quite similar. Comparing with the simula-
tions for frictionless particles, we find that our values of
B = 0.55 for the data without rattlers are larger than the
value of 0.5 reported in [2,3], but smaller than those of
Donev et al. [5] obtaining 0.6 in 3D. In contrast, for a
model of frictional disks under shear, Aharonov and Sparks
[11] obtain the much lower value of 0.36. However, a direct
comparison is not possible to the present case of jamming
under isotropic conditions.

Figure 2 shows the variation of P with ¢ in the lower
panel, indicating a clear transition at ¢, = (0.8422 =
0.0005. For this choice of ¢,, P increases as P o (¢ —
¢.)¥ with ¢ = 1.1 £0.05 above ¢.. This value of ¢
pertains to a fit over the full range ¢ = ¢ of Fig. 2; a
larger exponent would be obtained if the fit range were
limited to very close to ¢.. This value is close to the value
¢ = 1.0 found [2,3] for a linear force law, and this linear
law is indicated as a dashed line in Fig. 2. One expects such
a linear force law (with a logarithmic correction) for ideal
disks, but direct mechanical calibration of the force law for
the cylinders is closer to 8%/2 (see Ref. [10]). This rather
high exponent for the force law is attributable to the small
asperities, which influence the force law for small defor-
mations. However, the photoelastic response is detectable
only for 6 > 150 um, and for such &’s, the force law is
close to locally linear in 6.

From the P vs ¢ data, we can also obtain the bulk
modulus, B = —AJdP/dA, where A is the area enclosed
by the system boundaries. Since, ¢ = A, /A, where A, is

the (presumably fixed) area occupied by the disks B =
¢dP/d¢. Then, B x (¢ — ¢,.)?"!, which gives a weak
pressure variation of B above ¢,.. We note that anomalous
results for the bulk modulus have been observed in acous-
tical experiments by Jia, and discussed by Makse et al.
[12], where the bulk modulus near ¢, varied faster with P
than was previously expected because of changes in Z.

Since P in Fig. 2 corresponds closely to expectations for
a linear force law, we performed a computer simulation for
a polydisperse system of 1950 particles with a linear force
law (k, = 10° N/m) without friction; details can be found
in [13]. In Fig. 3 the results are shown for a larger range in
density than done in earlier studies. All the data in Fig. 3
can be fitted with a single value for the transition density of
¢, = 0.84005. While the average overlap per particle
(equivalent of the deformation & for physical particles) is
clearly linear in ¢, the pressure P is not: P increases faster
than linear with an exponent close to the one found in the
experiment. Z is also consistent with a power-law exponent
close to 0.5. With the rattlers included, Z at ¢, Z, = 3.94,
is slightly below the isostatic value of 4 for a frictionless
system of disks.

To connect with the predictions of Henkes and
Chakraborty [7], we consider P — P, vs Z. The prediction
from their Eq. (10) is equivalent to (P—P_.)/P,=u—
[(4u?+1)Y/2—1]/2, where u=C(Z—Z_.) and C=€/a.
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FIG. 3 (color online). Results from new computer simulations.
For all fits ¢. = 0.84005. (a) Average overlap per particle in
units of the mean particle radius is linear in ¢ — ¢.. (b) P
obtained from the Cauchy stress tensor (circles) and the force on
the walls (squares) satisfy a power law (¢ — ¢,.)¥ with o =
1.13; dashed line shows a linear law for comparison. (¢) Z
(rattlers included) exhibits a power law Z — Z, = (¢ — ¢ )P
with Z, = 3.94 and B = 0.5015.

058001-3



PRL 98, 058001 (2007)

PHYSICAL REVIEW LETTERS

week ending
2 FEBRUARY 2007

3.5F
[ ]
3t Pc =1
Fitting Parameters:
2.5

Z,=3.04+0.108
2t

sluc= 1.3+0.15

035 3 35 2 45

FIG. 4 (color online). Pressure vs Z; experimental data and a
fit to the model of Henkes and Chakraborty [7]. In this fit, the
constant C defined in the text is treated as an adjustable parame-
ter. The other fitting parameter is Z..

is a system-dependent constant. Thus, € is a measure of the
grain elasticity, and € = 0 corresponds to completely rigid
grains. Also, «, is the critical value for «. In fitting to this
form, we may adjust P, (within reason) Z., and C. In
Fig. 4 we find reasonable although not perfect agreement
with this prediction (above ¢.), and obtain Z,. = 3.04,
which is close to the isostatic value Z, = 3.

We now turn to the rounding that we observe in Z quite
close to the transition, and the background pressure that we
obtain near ¢.. One possible explanation is the friction
between the disks and the Plexiglas base. This could help
freeze in contact forces and contacts. However, a simple
estimate of the upper bound for the friction with the base
shows that this cannot be a significant effect, at least as
regards the pressure background. To obtain an estimated
upper bound for the base friction on P, we assume that base
friction can support intergrain contact forces correspond-
ing to the maximum base frictional force per grain, Fy =
Mramg = 2.8 X 1073 N, where m is the mass of a grain
and uy,, < 1 is the friction between a particle and the base.
Assuming Z interparticle contacts and one particle-base
contact per grain, we estimate the resulting upper bound on
the perturbation to the pressure as 6P = (ZF/R)/ (7R?) =~
0.22Z N/m, where R is a disk radius. Since Z = 3, this
pressure is almost 2 orders of magnitude too small to be of
relevance. An additional issue concerns the anisotropy that
is induced during compression or expansion by the appa-
ratus. This induced anisotropy is difficult to avoid and/or
relax close to ¢, even in the simulation, but it remains
small. It is visible in Fig. 1(e), where a weak array of force
chains tends to slant from lower left to upper right. Among
other reasons, the anisotropy can be induced by wall
friction due to the confining lateral boundaries of the
biaxial apparatus.

We conclude by noting that these experiments, the first
of which we are aware, demonstrate the critical nature of
jamming in a real granular material. Our results take

advantage of the high accuracy in contact number Z that
is afforded when the particles are photoelastic. Z shows a
very rapid rise at a packing density ¢. = 0.8422. The fine
resolution in density allows us to see that the transition is
not as sharply discontinuous under the present experimen-
tal conditions as in the computer simulation. Above ¢, Z
and P follow power laws in ¢ — ¢, with respective ex-
ponents B of 0.5 to 0.6 and ¢ = 1.1. The values for both 8
and ¢ are consistent with recent simulation results for
frictionless particles. In addition, we find reasonable agree-
ment with a mean-field model of the granular jamming
transition, again for frictionless particles. These results
suggest that effects of friction on jamming are likely
modest, although perhaps not ignorable. That jamming in
the experiment occurs over a narrow, but finite range in ¢
seems mostly to be caused by small residual shear stresses
that are induced by interactions with the walls confining
the sample (not the base supporting the particles). The
ability of a small amount of shear to affect the jamming
transition is interesting, and points to the need for a deeper
understanding of the effects of anisotropy.
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