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The SU�N� Heisenberg model with various single-row representations is investigated by quantum
Monte Carlo simulations. While the zero-temperature phase boundary agrees qualitatively with the
theoretical predictions based on the 1=N expansion, some unexpected features are also observed. For
N � 5 with the fundamental representation, for example, it is suggested that the ground states possess
exact or approximate U(1) degeneracy. In addition, for the representation of Young tableau with more than
one column, the ground state shows no valence-bond-solid order even at N greater than the threshold
value.
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Since the resonating-valence-bond state was proposed
[1] as a possible mechanism that supports novel super-
conductivity in cuprates, it has been a major target of
condensed matter theory to find a short-range interaction
model that realizes a spin-liquid state at zero temperature.
Introducing frustrations into the model that otherwise has a
magnetic ground state is one of promising directions to
achieve this goal. Numerical verification for such models
is, however, technically very difficult, and conclusive re-
sults are still missing for geometrically frustrated systems
such as the antiferromagnet on a triangular lattice. Another
approach was taken in [2,3], where the authors generalized
the Heisenberg antiferromagnet to higher symmetries,
thereby increasing the model’s degrees of freedom and
enhancing quantum fluctuations. Based on the 1=N expan-
sion treatment, they predicted that the model with suffi-
ciently large N has a valence-bond-solid (VBS) ground
state with spontaneously broken lattice symmetry. The
nature of the ground states may depend on the representa-
tion, somewhat analogous to what happens in the SU(2)
models in one dimension though the underlying mecha-
nisms may be rather different.

More specifically, it was suggested [2,3] that, for the
model with the Young tableaux with m rows and n col-
umns, the N-n phase diagram does not strongly depend on
m, and has a line of phase transition separating the small-N
Néel region from the large-N VBS region. It was also
argued that the nature of the VBS ground state can be
classified according to the quotient of the division of n
by 4. If n � 1 or 3 �mod 4�, the ground state has a colum-
nar ordering [Fig. 1(a)] with the translational symmetry
and the 90� rotational symmetry both broken, whereas if
n � 2 �mod 4� it has a ‘‘nematic’’ VBS ordering
[Fig. 1(b)] with only the lattice-rotational-symmetry bro-
ken. Finally, if n is a multiple of 4, there is no spontaneous
breaking of the lattice symmetry.

They also showed that the O�1=N� effective Hamilton-
ian with the fundamental representation is exactly the same
as the quantum dimer model [4] at V � 0. For the quantum
dimer model, it was shown by a numerical calculation [5]
that the ground state is a VBS state with columnar arrange-

ment of dimers. This is in agreement with the above
conjecture that the degeneracy is 4 for n � 1. A direct
check of the spontaneous breaking down of the transla-
tional symmetry for m � n � 1 was carried out in a pre-
vious Letter [6], which yielded the transition value of N,
namely, 4<N��m � n � 1�< 5.

The model Hamiltonian we discuss is defined as

 H � J
X

�R;R0�

XN

�;��1

S���R�S���R0�; (1)

where the operator S�� is the generator of the SU�N�
algebra. Here we consider the simple square lattice with
the periodic boundary condition. We divide the whole
lattice into two sublattices, say, A and B. The representa-
tion of the generators on sublattice A is characterized by
the Young tableau with a single raw (m � 1) and varying
number of columns. The representation on sublattice B is
the conjugate of that on sublattice A. We have performed
quantum Monte Carlo simulations by the directed loop
algorithm [7] and extrapolated the results to the zero-
temperature limit. The algorithm can be obtained by gen-
eralizing the idea of the coarse-grained algorithm for N �
2 [8] to the present general N case. The technical details
will be published elsewhere [9].

Our principal findings are as follows. (i) For n � 1, the
ground state in the large-N region adjacent to the Néel

 

FIG. 1. Three types of VBS states: (a) columnar ( �Dx � 0 and
�Dy � 0), (b) nematic ( �Dx � �Dy � 0), and (c) plaquette ( �Dx �
�Dy � 0). The quantities �Dx and �Dy characterize spontaneous

translational-symmetry-breaking in the x and y directions, re-
spectively. [See Eq. (4) for the definition.]
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region is the columnar VBS state as the previous works
suggested. However, up to L � 32, it appears to have
infinite degeneracy corresponding to a continuous U(1)
symmetry that does not exist in the original microscopic
Hamiltonian but may emerge asymptotically. Accordingly,
the resonons [4] are gapless. (ii) The ground state in the
large-N region for n > 1 shows no evidence of break down
of any lattice translational symmetry, in particular, the ones
predicted in Read and Sachdev [2,3]. The distance depen-
dence of the energy-energy correlation function is consis-
tent with the algebraic decay.

In the present Letter, we start by showing some results
that confirm the conclusions of the previous numerical
work on the SU�N� model, and then discuss the new
findings. We first look at the case of the fundamental
representation (n � 1). It was found [6] that for N � 4
the ground state is a Néel state whereas it does not have a
spontaneous staggered magnetization for N � 5. Instead
the ground state for N � 5 and 6 was found to possess the
spontaneous dimerization. Although a macroscopic quan-
tity is often used as a probe for detecting the transi-
tion, here we examine two-point correlation functions in
order to see the transition more clearly: CQ�R;L� �
hQ�Re��Q�0�iL 	 hQ�Re��ihQ�0�iL, where L is the system
size, e� (� � x; y) a lattice unit vector, and Q�R� an
arbitrary quantity locally defined around the position R.
We also use the correlation ratio [10] defined simply as
RQ�L� � CQ�L=2;L�=CQ�L=4;L�: Similar to the Binder
parameter, the correlation ratio is a dimensionless quantity
and, when plotted against a relevant physical parameter,
the common crossing point of curves with various system
sizes marks the transition point. In Fig. 2, the correlation
ratio for the ‘‘magnetic’’ moment is plotted against N for
various system sizes for m � 1. Here, the magnetic mo-
ment is defined as

 ��R� � S11�R� 	 S22�R�:

While the ratio tends to converge to unity for N � 2, 3, 4,
indicating the existence of the Néel ordering, it rapidly

decreases for N � 5. Based on this figure, we can estimate
the transition point as N��n � 1� 
 4:3.

While Fig. 2 establishes the absence of the magnetic
ordering for N � 5, 6, 7, it does not tell us much about the
nature of the ground state. It was shown in [6] that in the
ground state the lattice translational invariance is broken.
Here we reconfirm the presence of the VBS order by
detecting the long-range correlation in CA�R;L�, where A
is defined as

 A�R� � Px�R� 	 Py�R�; (2)

and P��R� is the nearest-neighbor product of the magnetic
moments, i.e.,

 P��R� � ��R���R� e��: (3)

In Fig. 3, CA�L=2;L� is plotted. It is expected that the
correlation must decay down to zero in the large L limit for
a Néel state, whereas for any type of the VBS states in
Fig. 1 it must converge to a nonzero value. Figure 3 clearly
shows that the large-N phase for the fundamental repre-
sentation is the VBS phase.

These observations are consistent with the columnar
VBS states [such as Fig. 1(a)] as is conjectured for N >
N� [2,3]. However, the above-mentioned probe A only is
not sufficient to rule out the plaquette VBS state [Fig. 1(c)].
Since the columnar VBS states do not possess the 90�

rotational symmetry while the plaquette VBS state does,
one may naively expect that measuring the difference
between the average bond strength in the x direction and
that in the y direction can distinguish the two. Therefore,
we have computed the quantity B � h� �Px 	 �Py�

2i, where
an overline indicates the average over the volume, i.e.,
�P� � V	1P

RP��R�. The quantity B is plotted in Fig. 4
against the system size.

Instead of distinguishing the two types of states, the
quantity B turns out to reveal an interesting property. The
quantity B is proportional to 1=L2 not only forN � 3 and 4
but also for N � 5 and 6, indicating that the average bond
strength in the x direction is the same as that in the y
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FIG. 2. The correlation ratio, R��L�, of the magnetization for
the fundamental representation (n � 1).
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FIG. 3. The two-point correlation function the rotational-sym-
metry-breaking order parameter, A, for the model with the
fundamental representation (n � 1).
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direction even in the VBS state. It follows that the expec-
tation value of the nearest-neighbor correlation P��R� in a
single (pure) VBS ground state has the form

 hP��R�isingle � �P� �D� � �	1�R� �� � x; y� (4)

with the direction-independent average value �P and some
direction-dependent constant �D� that characterizes the
dimerization order. The constants �Dx and �Dy are expressed
by the local quantities D��R� as �D� � V	1P

RD��R�,
where D��R� � P��R� e�� 	 P��R��=2.

In order to distinguish the columnar state from the
plaquette state, we have to examine the joint distribution
function, Prob� �Dx; �Dy�. For small systems, it consists of a
single broad peak at the center, � �Dx; �Dy� � �0; 0�, even for
N � 5. However, as the system grows the weight at center
should diminish and peaks must appear according to the
structure of the VBS phase. If the columnar VBS states are
the true ground state, four peaks must develop at symmet-
ric positions on the x and y axes [� �Dx; �Dy� �

��D; 0�; �0;�D�], whereas if the plaquette VBS states
are the ground states, the peaks must appear at diagonal
positions [� �Dx; �Dy� � ��D;D�;��D;	D�].

As we see in Fig. 5, the distribution obtained from our
computation shows neither feature. The distribution is
circularly symmetric. This feature does not depend on N,
the temperature, or the system size (at least up to L � 32),
whenever a finite VBS order is observed. This suggests that
the ground state is not only fourfold degenerate but also
infinitely degenerate. The ground state manifold possesses
the U(1) invariance, although it is not obvious from the
microscopic Hamiltonian Eq. (1). Since each ground state
breaks this U(1) symmetry, there must be a Goldstone
mode associated with it, which may correspond to ‘‘reso-
nons’’ mentioned in [4], though its gapless nature was
predicted only for an isolated critical point. If the apparent
U(1) symmetry persists to the thermodynamic limit, the
resonons must be gapless not only at the isolated critical

point N � N� but also in the whole region of the VBS
phase. However, another possibility cannot be excluded by
the present numerical calculation, i.e., the possibility that
this apparent U(1) symmetry may be a transient behavior
that applies only to certain intermediate length scales and
the discrete symmetry of the original microscopic
Hamiltonian is recovered for larger length scales. If this
is the case, there should be a finite number of preferred
angles in the two-component order-parameter space to
which the true ground states correspond, and the resonon
modes have a small but finite excitation gap.

Next we consider the model with the representation of
Young’s tableaux with two or more columns (n � 2). In
order to determine the critical value of N, we have com-
puted the correlation ratio for the magnetization as de-
scribed above. For n � 2, the correlation ratio for the
magnetization is plotted in Fig. 6. The Néel state is the
ground state for N � 9, whereas it is not for N � 10 and
larger. We can see the trend changes around N��n � 2� 

9:5, at which curves cross each other. This is again in a
good agreement with the 1=N expansion result, N� 
 5:3n

 

FIG. 5 (color). The frequency of observing a pair of values
� �Dx; �Dy� during the Monte Carlo simulation for N � 6 at L � 32
and � � 16. The value at each pixel is the average over eight
symmetrically equivalent points, �� �Dx;� �Dy� and �� �Dy;� �Dx�.
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FIG. 6. The correlation ratio of the magnetization for the
representation of two-box Young tableau (n � 2).
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FIG. 4. The squared difference of the average bond strengths in
the x and y directions for the fundamental representation. The
straight lines that correspond to B / 1=L2 are drawn for com-
parison.
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[2,11]. For n � 3 and n � 4 we have performed similar
computation and located the phase boundary as N��n �
3� 
 14 and N��n � 4� 
 20, respectively. These results
are summarized in the schematic phase diagram (Fig. 7).

Lastly, we turn our attention to the nature of the non-
magnetic ground states for n � 2. As mentioned above,
any type of the VBS states in Fig. 1 can be characterized by
a nonzero value of CA�L=2;L� in the L! 1 limit. This
correlation function is plotted in Fig. 8 for n � 1, 2, 3, 4.
Characteristic features do not depend on N for each n. We
show only the data for a single value of N for the sake of
readability of the figure. (The value of N shown in Fig. 8 is
chosen so that it is close to but definitely above the esti-
mated threshold value.) The top left panel for n � 1, N �
5 is shown for comparison. As is clear from the figure, the
system possesses the VBS ordering only for n � 1, but not
for n � 2, 3, 4.

To obtain some information as to whether the large-N
phase at n � 2 is gapless or not, we have also computed the
correlation function of P��R� itself, which is proportional
to the energy-energy correlation. In a clear contrast to the
case of n � 1, we have seen monotonic decrease to zero
for n � 2, 3, 4, which is consistent with the absence of the
rotational-symmetry breaking for n � 2, 3, 4 mentioned
above. We do not clearly observe exponential decay in any
of the disordered cases. The decay in the correlation up to
the length scale of L
 32 is consistent with the power law
with the decay exponent between 2 and 3. However, the
correlation function for large L is very small and the
relative error is too large to obtain a definite answer to
the question whether this phase is gapless or not.

To summarize, in addition to the confirmation of the
previous result [6], we have found evidence of an emergent
(exact or approximate) U(1) symmetry of the ground state
space of the SU�N� model with the fundamental represen-
tation, and also found no VBS order in the large-N region
adjacent to the phase boundary to the Néel region. The
latter finding is the first strong evidence for the spin-liquid
(disordered) ground state in the present model that does not
have geometrical frustrations in contrast to the models
studied previously in search for the quantum disordered
states. As for the first finding, it is appropriate to mention

the recent works on the deconfinement critical phenomena
(DCP). The present SU�N� model is the model that was
discussed in previous works [12–14] related to DCP, where
the authors argued that some unconventional type of the
second-order phase transition is possible between two
phases with apparently unrelated symmetries (e.g., the
VBS phase and the Néel phase). Also discussed there
was the emergent U(1) symmetry at (or near [14]) the
critical point. We suspect that the U(1) structure that we
have observed reflects validity or approximate validity of
the DCP scenario in the present model at zero temperature.

The author would like to thank Cristian Batista and
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Supercomputer Center, Institute of Solid State Physics,
University of Tokyo.
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FIG. 7. The zero-temperature phase diagram of the SU�N�
model on a square lattice with single-row (m � 1) representa-
tions.
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FIG. 8. The correlation function of the rotational-symmetry-
breaking order-parameter A at the largest distance for n � 1, 2,
3, 4. The value of N for each n is close to but larger than the
threshold value, Nc�n�.
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