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We show that the three-junction SQUID device designed for the Josephson flux qubit can be used to
study the dynamics of quantum chaos when operated at high energies. We determine the parameter region
where the system is classically chaotic. We calculate numerically the fidelity or Loschmidt echo (LE) in
the quantum dynamics under perturbations in the magnetic field and in the critical currents, and study
different regimes of the LE. We discuss how the LE could be observed experimentally considering both
the preparation of the initial state and the measurement procedure.
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Ultrasmall Josephson devices have been used as tools for
studying quantum phenomena at the macroscopic level
since the 1980s [1]. Macroscopic quantum tunneling [2]
and macroscopic quantum coherence of flux [3] and per-
sistent currents [4] have been observed experimentally.
More recently, mesoscopic Josephson devices have been
used for the design of qubits for quantum computation [5–
8]. The progress made in this case allows us to have
nowadays Josephson circuits with small dissipation and
large decoherence times, giving place to a coherent ma-
nipulation of the system [7,8]. This could also make pos-
sible the use of Josephson devices for the study of the
quantum dynamics of chaotic systems, a subject where
there has been a great interest in the last years [9–14].

The stability of the quantum dynamics of a system
against perturbations [9] can be quantified by the fidelity
or Loschmidt echo (LE) [10]. The LE is the overlap be-
tween two states that evolve from the same initial wave
function j�0i under two slightly different Hamiltonians,

 F�t� � jf�t�j2 � jh�0jeiH"t=@e�iH0t=@j�0ij
2; (1)

with H0, H" the unperturbed and perturbed Hamiltonians,
respectively. In classically chaotic systems, above a per-
turbative regime where the LE has a Gaussian decay for
short times, the LE shows an exponential decay for large t,
F�t� / e��t [10–14]. For weak perturbation strength " the
decay constant � depends as ��"� / "2, and is obtained
from the Fermi golden rule (the FGR regime) [11], while
for strong perturbations � becomes independent of " and
saturates at the classical Lyapunov exponent � (the
Lyapunov regime) [10]. There have been some recent
experimental measurements of the LE [15–17]. Here we
will show that the device for the Josephson flux qubit
(DJFQ) studied in [6–8] is also a promising system for
the experimental observation of the LE.

The DJFQ consists of three Josephson junctions in a
superconducting ring [6] that encloses a magnetic flux
� � f�0, with �0 � h=2e. Two of the junctions have
the same coupling energy EJ and capacitance C, while
the third junction has couplings �EJ and �C, respectively
(0:5<�< 1). Typically the circuit inductance can be

neglected and the phase difference of the third junction is
’3 � 2�f� ’1 � ’2, leading to the Hamiltonian [6]

 H � 1
2
~PTM�1 ~P� EJV� ~’�; (2)

where ~’ � �’1; ’2�, ~P �M � d ~’=dt, and
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with EC � e2=2C, we include in M

the on-site gate capacitance Cg � �C, and

 V� ~’��2���cos’1�cos’2��cos�2�f�’1�’2�:

(3)

In the quantum regime, ~̂P � �i@ ~r’ � �i@�
@
@’1

; @
@’2
�, the

time-dependent Schrödinger equation is
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@�� ~’�
@t

�

�
�
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2
~rT’m�1 ~r’ � V� ~’�

�
�� ~’�; (4)

where we normalized time by tc � @=�EJ, energy by EJ,
and momentum by @=�. We see in Eq. (4) that the parame-
ter � plays the role of an effective @. For quantum compu-
tation implementations [6–8] the DJFQ is operated at
magnetic fields near the half-flux quantum (f �
1=2� �f). In this case the two lowest energy eigenstates
are symmetric and antisymmetric superpositions of two
states corresponding to macroscopic persistent currents
of opposite sign. These two eigenstates are energetically
separated from the others (for small �f) and therefore the
DJFQ has been used as a qubit [6–8]. As we will discuss
here, the higher energy states of the DJFQ show quantum
manifestations of classical chaos.

It has been found in [18,19] that superconducting loops
with three Josephson junctions and on-site capacitances
(� � 1) can be chaotic. Most Josephson circuits, like the
DJFQ, have small on-site gate capacitances (�� 10�2).
Here we analyze the dynamics of the DJFQ considering the
realistic case with � � 0:02 [6]. We first obtain the classi-
cal dynamical evolution integrating the Hamilton equa-
tions that correspond to Eq. (2) with a second order
Verlet algorithm. For different values of the parameter �
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and magnetic field f we compute the maximum Lyapunov
exponent � for each orbit at different energies E. We
estimate the chaotic volume vch�E�, as the probability of
having a chaotic orbit (i.e., � > 0) for a given E, using 103

initial conditions randomly chosen with uniform probabil-
ity within the available phase space. Also the average
Lyapunov exponent ���E� of the chaotic orbits is obtained.
In Fig. 1(a) we show vch�E� and ���E� for f � 0:5 and � �
0:8. Above the minimum energy of the potential, Emin, we
find (i) regular orbits for Emin <E< Ech (vch � 0),
(ii) soft chaos (i.e., coexistence of regular and chaotic
orbits, 0< vch < 1) for Ech <E< Ehc, a Poincaré section
for this case is shown in the inset of Fig. 1(a), and (iii) hard
chaos (all orbits are chaotic, vch � 1) for E> Ech. The
average Lyapunov exponent is �� > 0 above Ech. In
Fig. 1(b) we show the energy boundaries of the different
regimes (Emin, Ech, Ehc) as a function of �f � f� 1=2 for
� � 0:8. We can see that for f � 1=2 the onsets of soft and
hard chaos, Ech, Ehc, are closer to Emin in comparison with
other values of f. In the inset of Fig. 1(b) we also show the
boundaries of the dynamic regimes as a function of � for
f � 1=2. The Hamiltonian dynamics of Eq. (2) are a good
approximation of the problem for energies E< 2�, with �
the superconducting gap. The Al=AlOx=Al junctions of [6]
have 2� � 3:7EJ. Since we find Ehc � 1:75EJ, there is a
wide energy range where the hard chaos regime is experi-
mentally accessible. Furthermore, we find that for realistic
experimental parameters (� � 0:1� 0:5, � � 0:7� 0:8),
the third quantum energy level can be above the classical

onset of chaos, Ech, for f � 1=2. In Ref. [19], for the case
with � � 1, an analysis of the statistics of the energy
spectra of the quantum Hamiltonian shows that it belongs
to the Gaussian orthogonal ensemble in the hard chaos
regime. We find a similar result in our case, with � �
0:02 and f � 1=2, for E> Ehc [20].

We now calculate the quantum dynamics of the DJFQ
integrating numerically Eq. (4) with a fourth order split-
operator algorithm as in [21], with a discretization grid of
�’ � 2�=128 and �t � 0:015�tC. We use 2�-periodic
boundary conditions on ~’ � �’1; ’2�. To compute the LE
of Eq. (1), the simulations are started from minimum-
uncertainty 2�-periodical wave packets [22] given by

 j�0i � � ~K0; ~’0
� ~’� � Cei ~K0� ~’� ~’0�e�B� ~’� ~’0�=2�2

; (5)

with B� ~’� � 2� cos’1 � cos’2, [B� ~’� � j ~’j2=2 for
small j ~’j], ~K0 � �k1; k2� with k1, k2 integers, and � is
the width of the wave packet. The LE is usually computed
as the average �F�t� over different j�0i (see [12,14]). Here
we average over 15 initial conditions with different ~K0, ~’0

corresponding to the same classical energy. We choose
�2 � 0:31�, which corresponds to a spectral width of
�E � 0:3EJ. We consider E � 3EJ > Ehc, for which the
classical phase space is filled by a connected region of
chaos with Lyapunov exponent � � 0:182	 0:008.

We evaluate the LE of the DJFQ against perturbations in
the parameters � and f. In Fig. 2(a) we show the time
dependence of �F�t� for different perturbations in the pa-
rameter � � �0 � �� for �0 � 0:8, while in Fig. 2(b) we
show �F�t� for different perturbations in f � 1=2� �f. We
can see that in both cases �F�t� decays with time, and that
the decay rate tends to increase when increasing the per-
turbation. Above a crossover value of the perturbation
(��c or �fc) we find that the curves of �F�t� tend to overlap.
The overall decay of the LE has been described with the
form �F�t� � Ae��t � F1 [12]. For large perturbations the
decay rate � saturates at a value close to the Lyapunov
exponent � of the classical dynamics. This can be seen in
Fig. 2 where the dashed lines show the slope of a decay rate
with the Lyapunov exponent for comparison. The constant
value F1 is proportional to the inverse of the fraction of the
volume of the Hilbert space spanned by the initial wave
function j�0i [12]. In our case this corresponds to F1 /
�2=�2��2 � 0:31�=�2��2 � 0:0013 for � � 0:17, which
is close to the results of Figs. 2(a) and 2(b). An analysis of
the variance of the fidelity, �2

F�t� � F�t�2 � F�t�2 is also
important [14]. This is shown in the insets of Fig. 2. We
find that for increasing perturbations �2

F saturates to a
decay given by �2

F�t� � e
�2�t, as discussed in [14].

We obtain the decay rate � fitting the exponential form
Ae��t � F1 for �F�t� for times above the initial Gaussian
decay (we have chosen t > 15tJ in this case). Figure 3(a)
shows the obtained � as a function of the perturbation �f
for different values of �. For small perturbations we obtain
a quadratic law dependence of the decay rate with the
perturbation strength � / ��f�2, which corresponds to
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FIG. 1. (a) Chaotic volume vch and average Lyapunov expo-
nent �� versus energy E for � � 0:8 and f � 1=2. Inset: surface
of section ’xy � �’1 � ’2�=
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2
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at E �
1:6EJ. (b) Energy boundaries for the regimes of regular orbits,
soft chaos and hard chaos as a function of �f � f� 1=2 for
� � 0:8. The continuous line corresponds to the potential energy
minimum, Emin. Inset: Energy boundaries for the different re-
gimes as a function of � for f � 1=2.
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the Fermi Golden Rule (FGR) regime [11]. For large
perturbations the obtained values of � have a large error,
which is of the size of the oscillations seen in the data in
Fig. 3(a) for large �f. However, when comparing different
cases of �, we see that for large perturbations the values of
� fall close to the Lyapunov exponent (shown as a dashed
line). We obtain an estimate of the crossover value �fc
where � saturates to �. In the inset of Fig. 3(a) we see the
dependence of �fc with �. We find that �fc decreases for
decreasing � since quantum fluctuations become less im-
portant, and therefore the classical Lyapunov decay is
reached more easily. We find a similar behavior for the
dependence of � with �� and � [shown in Fig. 3(b)].

Therefore, we have shown that the DJFQ at high ener-
gies shows a decay of the LE, similar to other chaotic
systems [10–14]. This behavior could be experimentally
observable if the time scale for the Lyapunov decay, �Lyap

is much smaller than the decoherence time �decoh due to
external sources. We estimate �Lyap � @=��EJ�� �
0:04–0:2 ns, using � � 0:18 from the hard chaos regime
and experimental parameters [7,8]. In [7] a value of
�decoh � 20 ns was obtained for the lowest energy states.
At high energies (E� 3EJ), we find that the spectrum is
1 order of magnitude more dense than at low energies,
therefore �decoh should be at least 1 order of magnitude
smaller, �decoh � 1 ns. These roughly estimated values of

�Lyap � 0:1 ns and �decoh � 1 ns leave some room for ob-
serving the FGR and Lyapunov regimes of the LE.
However, in order to realize an experiment, the following
two issues have to be solved: (i) preparation of the initial
state and (ii) measurement of the fidelity F�t�.

(i) Preparation of the initial state.—To observe the
Lyapunov regime the system has to be started from a
wave packet narrowly localized in both coordinate (phase)
and momentum (charge) [10,11], as in Eq. (5). Here we
suggest the procedure shown schematically in Fig. 4(a). To
localize the momentum (charge): each of the junctions is
connected in parallel to a voltage source Vs, which builds
up a charge in each junction. (For E � 3EJ a voltage of
Vs � 0:1 mV is needed.) To localize the coordinate
(phase): each of the nodes of the DJFQ is connected to a
large superconducting reservoir through a dc SQUID as in
[23]. Then the system is prepared staying with Vs � 0 and
�SQUID � 0 for a long time (t < 0), and at t � 0 the
voltage sources are set to Vs � 0 and the flux in the
SQUIDs to �SQUID � �0=2.

(ii) Measurement of the fidelity.—One has to be able to
measure the overlap of Eq. (1). One protocol proposed
originally in [24] and applied in [25,26] (see also [15])
consists in coupling the chaotic system under consideration
with a qubit that acts both as a perturbing and a measuring
device. The approximate Hamiltonian for this case is H �
H0 
 j0ih0j �H	 
 j1ih1j. H0, H	 are the Hamiltonians of
the unperturbed and perturbed system, respectively, and
j0i, j1i are the two basis states of the qubit such that when
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the qubit is in the j1i state it induces a perturbation 	 in the
chaotic system. A Ramsey type of experiment is per-
formed: after a time t, �=2 pulses are applied to the qubit
for two evolutions from initial states of the system j�0i 


�j0i � aj1i�=
���
2
p

with a � 1 and a � i, respectively, from
which the fidelity amplitude f�t� can be obtained; see [24–
26] for details. A possible implementation of this idea is
shown in Fig. 4(b). A second DJFQ could be used operat-
ing in the ‘‘qubití ’ regime (called q-DJFQ) for measure-
ment of the LE in a DJFQ evolving in the quantum
‘‘chaotic’’ regime (called ch-DJFQ). The q-DJFQ is
coupled inductively to the ch-DJFQ, such that when the
q-DJFQ is in the j0i (j1i) state a clockwise (counter-
clockwise) current flowing in it induces a positive (nega-
tive) perturbation in the magnetic flux threaded by the ch-
DJFQ. The q-DJFQ should have a smaller area than the ch-
DJFQ (such that the flux induced in the q-DJFQ by the
currents in the ch-DJFQ is small). For a better observation
of the LE the ch-DJFQ should be built in a more semiclas-
sical regime (�� 0:1, for example), while the q-DJFQ is
built in a more quantum regime (�� 0:5, for example).
Furthermore, making measurements with the measuring
q-DJFQ placed at different distances from the ch-DJFQ
could allow to obtain the LE for different perturbation
intensities. For example, if when placing the q-DJFQ
closer to the ch-DJFQ the decay of the LE becomes inde-
pendent of the distance, that would indicate that the
Lyapunov regime was reached. The state preparation and
measurement procedure described here requires coupling
to several external objects, and thus the resulting decoher-
ence rates will inevitably increase. However, it has been
shown in general grounds that �Lyap � �decoh [13]. This
implies that at least the Lyapunov regime of the LE will be
observable, and for this reason it is already interesting to
perform the experiment. Moreover, one advantage of
Josephson nanocircuits is that they can be fabricated with

well-controlled parameters allowing to study the LE for
different cases of the effective @ (@eff � �).
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FIG. 4. Schematic setup for the observation of the Loschmidt
echo in a DJFQ. (a) Circuit for preparation of the initial wave
packet. Vs is a voltage source and the SQUID connects a node of
the DJFQ with a superconducting reservoir. Only one voltage
source and one SQUID are drawn, for simplicity. (b) Layout for
the measurement of the Loschmidt echo. ch-DJFQ: circuit with
quantum evolution in the chaotic regime; q-DJFQ: circuit used
as a qubit for measurement of the LE.
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