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We report measurements of the cross correlation between temporal current fluctuations in two
capacitively coupled quantum dots in the Coulomb blockade regime. The sign of the cross-spectral
density is found to be tunable by gate voltage and source-drain bias. We find good agreement with the data
by including an interdot Coulomb interaction in a sequential-tunneling model.
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Current noise cross correlation in mesoscopic elec-
tronics, the fermionic counterpart of intensity-intensity
correlation in quantum optics, is sensitive to quantum
indistinguishability as well as many-body interactions
[1–5]. A distinctive feature of fermionic systems is that
in the absence of interactions, noise cross correlation is
expected to always be negative [6]. Experimentally, nega-
tive correlations have been observed in several solid-state
Hanbury Brown–Twiss–type noise measurements [7–9].
Since no sign constraint exists for interacting systems, a
positive noise cross correlation in a Fermi system is a
characteristic signature of interactions.

Sign reversal of noise cross correlation has been the
focus of recent theory and experiment [10–18]. Theory
indicates that positive cross correlations can arise in the
presence of BCS-like interaction [10], dynamical screen-
ing [11,12], dynamical channel blockade [13], and strong
inelastic scattering [12,14–16]. Experimentally, sign re-
versal of noise cross correlation has been realized using a
voltage probe to induce inelastic scattering [17], and in a
beam-splitter geometry, where the sign reversal was linked
to a crossover from sub- to super-Poissonian noise in a
tunnel-barrier source [18]. This crossover was attributed to
Coulomb interaction between naturally occurring localized
states in the tunnel barrier [19], as has been done in experi-
ments on GaAs MESFETs [20] and stacked, self-
assembled quantum dots [21].

In this Letter, we investigate gate-controlled sign rever-
sal of noise cross correlation in a simple four-terminal
device. The structure consists of a parallel, capacitively
coupled double quantum dot operated in the Coulomb
blockade regime. In this configuration, the double dot
acts as a pair of tunable interacting localized states, en-
abling a systematic study of Coulomb-induced correlation.
Turning off interdot tunneling by electrically depleting the
connection between dots ensures that indistinguishability
(i.e., Fermi statistics) alone cannot induce any cross corre-
lation; any cross correlation, positive or negative, requires
interdot Coulomb interaction. We find good agreement

between the experimental results and a sequential-
tunneling model of capacitively coupled single-level dots.

The four-terminal double-dot device [see Fig. 1(a)] is
defined by top gates on a GaAs=Al0:3Ga0:7As heterostruc-
ture grown by molecular beam epitaxy. The two-
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FIG. 1 (color). (a) Scanning electron micrograph of the
double-dot device, and equivalent circuit at 2 MHz of the noise
detection system measuring the power spectral densities and
cross-spectral density of fluctuations in currents It and Ib.
(b) Differential conductances gt (yellow) and gb (magenta) as
a function of Vtc and Vbc over a few Coulomb blockade peaks in
each dot, at Vt � Vb � 0. Black regions correspond to well-
defined charge states in the double-dot system. Superimposed
white lines indicate the honeycomb structure resulting from the
finite interdot capacitive coupling. (c) Zero-bias (thermal) noise
Sb (black dots, right axis), conductance gb (magenta curve, left
axis), and calculated 4kBTegb (magenta curve, right axis) as a
function of gate voltage Vbc, with Vtc � �852:2 mV.
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dimensional electron gas 100 nm below the surface has
density 2� 1011 cm�2 and mobility 2� 105 cm2=V s.
Gate voltages Vl � Vr � �1420 mV fully deplete the
central point contact, preventing interdot tunneling. Gate
voltages Vtl (Vbl) and Vtr (Vbr) control the tunnel barrier
between the top (bottom) dot and its left and right leads.
Plunger gate voltage Vtc (Vbc) controls the electron number
M (N) in the top (bottom) dot; for this experiment M�
N � 100. The lithographic area of each dot is 0:15 �m2.
We estimate level spacing �t�b� � 70 �eV in each dot, for
�100 nm depletion around the gates.

Measurements are performed in a 3He cryostat using a
two-channel noise measurement system [Fig. 1(a)] [22]. A
voltage bias Vt (Vb) is applied to the left lead of the top
(bottom) dot, with right leads grounded. Separate resistor-
inductor-capacitor resonators (R � 5 k�, L � 66 �H,
C � 96 pF) convert fluctuations in currents It and Ib
through the top and bottom dots around 2 MHz into voltage
fluctuations on gates of high electron mobility transistors at
4.2 K, which in turn produce current fluctuations in two
50 � coaxial lines extending to room temperature, where
further amplification is performed. These signals are then
simultaneously digitized at 10 MHz, their fast Fourier
transforms calculated, and the current noise power spectral
densities St, Sb and cross-spectral density Stb extracted fol-
lowing 15 s of integration, except for the data in Fig. 1(c),
which was averaged for 50 s per point. The total gain of
each amplification line and the base electron temperature
Te � 280 mK are calibrated in situ using Johnson-noise
thermometry at base temperature and 1.6 K with the device
configured as two point contacts [22]. Differential conduc-
tance gt (gb) through the top (bottom) dot is measured
using standard lock-in techniques with an excitation of
25 �30� �Vrms at 677 (1000) Hz. Ohmic contact resistan-
ces of roughly a few k�, much less than the dot resistan-
ces, are not subtracted.

Superposed top- and bottom-dot conductances gt and gb
as a function of plunger voltages Vtc and Vbc form the
characteristic double-dot honeycomb pattern [23,24], with
dark regions corresponding to well-defined electron num-
ber in each dot, denoted (M, N) (first index for top dot), as
shown in Fig. 1(b). Horizontal (vertical) features in gt (gb)
are Coulomb blockade (CB) conductance peaks [25],
across which M (N) increases by one as Vtc (Vbc) is raised.
The distance between triple points, i.e., the length of the
short edge of the hexagon, provides a measure of the
mutual charging energy U due to interdot capacitive cou-
pling. By comparing this distance to the CB peak spacing,
and using the single-dot charging energy EC � 600 �eV
extracted from finite-bias CB diamonds (not shown), we
estimateU � 60 �eV [24]. We refer to the midpoint of the
short edge of a hexagon, midway between triple points, as a
‘‘honeycomb vertex.’’ Current noise Sb and conductance
gb, measured simultaneously at zero dc bias, over a CB
peak in the bottom dot (with the top dot in a CB valley) are
shown in Fig. 1(c). Agreement between the measured Sb

and the Johnson-Nyquist thermal noise value 4kBTegb is
observed.

Turning now to finite-bias noise measurements, Fig. 2(a)
shows the measured cross correlation, Stb, as a function of
plunger gate voltages Vtc and Vbc, in the vicinity of a
honeycomb vertex, with voltage bias of �100 �V applied
to both dots. The plot reveals a characteristic quadrupole
pattern of cross correlation centered on the honeycomb
vertex, comprising regions of both negative and positive
cross correlation. Similar patterns are observed at all other
honeycomb vertices. The precise symmetry of the pattern
is found to depend rather sensitively on the relative trans-
parency of each dot’s left and right tunnel barriers. Away
from the vertices, noise cross correlation vanishes.

To better understand this experimental result, we model
the system as single-level dots capacitively coupled by a
mutual charging energyU, each with weak tunneling to the
leads. The energy needed to add electron M� 1 to the top
dot depends on the two plunger gate voltages as well as the
electron number n 2 fN;N � 1g on the bottom dot: Et �
�tVtc � �tVbc �Un� const, where lever arms �t and �t
are obtained from the honeycomb plot in Fig. 1(b) [23] and
the measured EC. The energy Eb to add electron N � 1 to

 

FIG. 2 (color). Measured (a) and simulated (b) cross-spectral
density Stb near a honeycomb vertex, with applied bias Vt �
Vb � �100 �V (ejVt�b�j � 4kBTe � EC=6). Blue regions
(lower-left and upper-right) indicate negative Stb, whereas red
regions indicate positive Stb.
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the bottom dot is given by an analogous formula.
Occupation probabilities for charge states (M, N), (M�
1, N), (M, N � 1), and (M� 1, N � 1) are given by the
diagonal elements of the density matrix, � �
��00; �10; �01; �11�

T . The time evolution of � is given by
a master equation d�=dt �M�, where

 M �

�Wout
00 W00 10 W00 01 0

W10 00 �Wout
10 0 W01 11

W01 00 0 �Wout
01 W10 11

0 W11 10 W11 01 �Wout
11

0
BBB@

1
CCCA: (1)

Each diagonal term of M gives the total loss rate for the
corresponding state:Wout

� �
P
�W� �. Off-diagonal terms

give total rates for transitions between two states. For
example, W10 00 � Wl

10 00 �W
r
10 00 is the total tunnel-

ing rate into (M� 1, N) from (M, N), combining contri-
butions from the top-left and top-right leads.

Rates for tunneling between a dot and either of its leads
i 2 ftl; tr; bl; brg depend on both the transparency �i of the
tunnel barrier to lead i and the Fermi function fi��� �
	1� expf����i�=kBTeg


�1 evaluated at � � Et�b�, where
�i is the chemical potential in lead i. For example, the rates
for tunneling into and out of the top dot via the left tunnel
barrier are given by Wl

10 00 � �ltflt�Et� and Wl
00 10 �

�lt	1� flt�Et�
, respectively. As Et is lowered across �lt,
Wl

10 00 increases from 0 to �lt over a range of a few kBTe,
while Wl

00 10 does the opposite.
We obtain the steady-state value of �, denoted ��, by

solving M �� � 0. Using techniques described in
Refs. [26–28], we define current matrices Jtr and Jbr for
the top- and bottom-right leads and apply them to �� to
obtain average currents hIt�b�i and correlator hIt���Ib�0�i
[29]. The cross-spectral density in the low-frequency limit
is then given by Stb � 2

R
1
�1	hIt���Ib�0�i � hItihIbi
d�.

Simulation results for Stb as a function of plunger gate
voltages are shown in Fig. 2(b), with all parameters of the
model extracted from experiment: U � 60 �eV, Te �
280 mK, �tl � �tr � 1:5� 1010 s�1, and �bl � �br �
7:2� 109 s�1. The �i were estimated from the zero-bias
conductance peak height using Eq. 6.3 of Ref. [30], taking
left and right barriers equal. The simulation shows the
characteristic quadrupole pattern of positive and negative
cross correlation, as observed experimentally. We note that
the model underestimates Stb by roughly a factor of 2. This
may be due to transport processes not accounted for in the
model. For instance, elastic cotunneling should be present
since the �i are comparable to kBTe=@. Also, since the
voltage-bias energy ejVt�b�j is greater than the level spacing
�t�b�, transport may occur via multiple levels [13,31,32]
and inelastic cotunneling [33–35].

Intuition for how Coulomb interaction in the form of
capacitive interdot coupling can lead to the observed noise
cross-correlation pattern can be gained by examining en-
ergy levels in both dots in the space of plunger gate
voltages, as shown in Fig. 3. With both dots tuned near
Coulomb blockade peaks, the fluctuations by one in the

electron number of each dot, caused by the sequential
tunneling of electrons through that dot, cause the energy
level of the other dot to fluctuate between two values
separated by U. These fluctuations can raise and lower
the level across the chemical potential in one of the leads
of the dot, strongly affecting either the tunnel-in rate (from
the left, for the case illustrated in Fig. 3) or the tunnel-out
rate (to the right) of that dot. Specifically, the rate of the
‘‘U-sensitive’’ process in each dot fluctuates between a
slow rate (red arrow), suppressed well below �i, and a
fast rate (green arrow), comparable to �i. For balanced
right and left �i in each dot, the U-sensitive process
becomes the transport bottleneck when its rate is
suppressed.

These U-sensitive processes correlate transport through
the dots. In region (b) of Fig. 3, for instance, where Stb is
negative, the U-sensitive process in each dot is tunneling
out. Here and in (c), where the U-sensitive process in each
dot is tunneling in, the U-sensitive processes compete:
occurrence of one suppresses the other, leading to negative
Stb. Conversely, in region (a) [(d)], where Stb is positive,
the top [bottom] dot’s U-sensitive process is tunneling out,
but the bottom [top] dot’s is tunneling in. Here, the
U-sensitive processes cooperate: occurrence of one lifts
the suppression of the other, leading to positive Stb.

 

FIG. 3 (color). Energy level diagrams in the vicinity of a
honeycomb vertex, with biases Vt�b� � �100 �V. (The various
energies are shown roughly to scale.) The solid horizontal line in
the top (bottom) dot represents the energy Et�b� required to add
electron M� 1 (N � 1) when the bottom (top) dot has N (M)
electrons. The dashed horizontal line, higher than the solid line
byU, represents Et�b� when the bottom (top) dot has N � 1 (M�
1) electrons. In each dot, the rate of either tunneling in from the
left or tunneling out to the right is significantly affected by this
difference in the energy level, taking on either a slow value (red
arrow) or a fast value (green arrow) depending on the electron
number in the other dot. In (a) and (d), where the occurrence of
each U-sensitive process enhances the rate of the other, we find
positive cross correlation. In (b) and (c), where the occurrence of
each U-sensitive process suppresses the rate of the other, we find
negative cross correlation.
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The arguments above also apply when one or both biases
are reversed. When both are reversed, we find both experi-
mentally and in the model that the same cross-correlation
pattern as in Fig. 2 appears (not shown). When only one of
the biases is reversed, we find both experimentally [as
shown in Fig. 4(a)] and in the model that the pattern
reverses sign. In the absence of any bias, cross correlation
vanishes both experimentally [as shown in Fig. 4(b)] and in
the model, despite the fact that noise in the individual dots
remains finite [as seen in Fig. 1(c)].

In conclusion, we have observed gate-controlled sign
reversal of noise cross correlation in a double quantum dot
in the Coulomb blockade regime with purely capacitive
interdot coupling. Experimental observations are in good
agreement with a sequential-tunneling model, and can be
understood from an intuitive picture of mutual charge-
state-dependent tunneling. This study, notable for the sim-
plicity and controllability of the device, may be particu-
larly useful for understanding current noise in systems
where interacting localized states occur naturally and
uncontrollably.
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FIG. 4 (color). (a) Measured Stb near a honeycomb vertex,
with opposite biases Vt � �Vb � �100 �V. Note that the
pattern is reversed from Fig. 2(a): negative cross correlation
(blue) is now found in the upper-left and lower-right regions,
while positive cross correlation (red) is now found in the lower-
left and upper-right. (b) Measured Stb near a honeycomb vertex,
with Vt � Vb � 0. Cross correlation vanishes at zero bias,
though the noise in each dot is finite.
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