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Effects of the Orientational Distribution of Cracks in Solids
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We derive a theory for the elastic characterization of multicracked solids based on a homogenization
technique. We consider a material containing a two-dimensional arbitrary distribution of parallel slit
cracks which is elastically equivalent to a crystal with orthorhombic symmetry. We obtain explicit
expressions for the macroscopic elastic stiffness tensor which is found to depend upon both the density of
cracks and their angular distribution, here described by a suitable order parameter. For the isotropic case,
we find that the degradation depends exponentially on the crack density. In addition, we show an unusual
elastic behavior of a multicracked medium in the plane strain condition: for a negative Poisson ratio, we
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obtain an effective Young modulus greater than the actual value of the host matrix.
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The macroscopic degradation of brittle materials is gov-
erned by the generation of cracks and by their mutual
interactions. While linear elastic fracture mechanics
(LEFM) provides the basic understanding of the failure
instability for a single crack, the overall mechanical be-
havior actually depends upon the positional and orienta-
tional distribution of an assembly of cracks.

The basic result of LEFM is represented by the Griffith
theory [1]: upon loading, a single crack with length [ > [,
will further grow (eventually producing materials failure),
while if [ < [, it will remain stable. Here the critical length
l. is inversely proportional to the square of the tensile
stress applied to the material. The Griffith criterion has
been extensively verified in glass specimens containing
cracks of controlled length [2], and recently validated by
atomistic simulations in an ideally brittle, single-crystal
system [3].

When considering the overall materials behavior, a key
conceptual issue consists in evaluating the effective elastic
properties (e.g., the stiffness tensor) that determine the
mechanical performance of the system containing a given
distribution of cracks. Under this respect, the characteriza-
tion of multicracked materials belongs to the vast field of
homogenization techniques [4,5]. The most extensively
studied elastic homogenization theory is basically ad-
dressed to a dilute dispersion of spherical [6] or ellipsoidal
[7] inclusions into a solid matrix. The results valid for a
dilute assembly of particles (e.g., defects or inclusions)
have been generalized in several ways, including the iter-
ated homogenization technique [8] and the differential
effective medium theory [9,10].

The predictions of homogenization techniques are of
paramount importance in several fields, ranging from ma-
terials science, to geophysics, to biology. Complex mate-
rials with negative Poisson ratio [11] or composite
materials with negative stiffness phases [12] have been in
fact investigated by such theoretical devices. On the other
hand, interesting applications have been developed for
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rocks, where cracking is originated by a number of geo-
logical processes, like thermal gradients and tectonic
stresses. Experiments on temperature- or stress-induced
cracking suggest that the former process produces a fairly
isotropic distribution of predominantly intergranular
cracks, while the latter generates a strongly anisotropic
distribution of intragranular and transgranular cracks,
with the majority of cracks oriented parallel to the direc-
tion of the maximum principal stress [13,14]. In addition,
homogenization techniques have been applied to investi-
gate the nonisotropic fracture mechanisms in mineralized
biological tissues, like bone and dentin [15]. The site-
specific accumulation of cracks has been studied as well,
since it is considered a key factor affecting the crack
resistance of bones [16].

This scenario stands for the conceptual framework
underlying the present investigation, which is addressed
to better understanding the effects of cracks on the me-
chanical properties of an elastic matrix by means of ho-
mogenization methodologies. First, we observe that a solid
body with a two-dimensional arbitrary orientational distri-
bution of parallel slit cracks is ultimately equivalent to a
crystal with orthorhombic symmetry, and then we explic-
itly derive its stiffness tensor. Moreover, we demonstrate
that the angular distribution of cracks can be described by a
sole order parameter, which takes into account all of the
microscopic features reflected macroscopically. Finally, by
developing an iterated homogenization procedure, we
show that the Young modulus of such a solid exponentially
decays with the density of cracks.

The elementary object of our model is an ellipsoidal
void with an infinitesimally thick minor axis, so as to
mimic the flat shape of a crack. Treating the crack as a
void and oblate ellipsoid of vanishing eccentricity is very
convenient since we develop our arguments by taking
profit from general results holding for ellipsoidal inclu-
sions [17]. We consider an ellipsoid with semiaxes a,, ay,
and a, (a, > a, > a, > 0) aligned, respectively, along the
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x, ¥, and z axes of a given Cartesian frame of reference. If
one of the principal axes of the ellipsoidal void, say a,,
becomes very large and the minor axis a, becomes negli-
gibly small, then the ellipsoid reduces to a slitlike crack
with half-length a, = b (see Fig. ).

Hence, we considered a void with infinite a, and finite
ay and a,. In other words, the void is an elliptic cylinder
aligned with the x-axes. We define the aspect ratio as e =
a./a,. The actual slitlike crack geometry is then described
by the limit a, — 0 or, equivalently, ¢ — 0. The present
Letter is addressed to investigating a multicracked solid
with a given distribution of cracks. Therefore, a number of
slit-cracks are randomly placed within the plane z-y. We
may consider different cases as described in Fig. 2, ranging
from distributions with cracks parallel to a given direction
[Figs. 2(a) and 2(d)], to cracks uniformly oriented in space
[Fig. 2(c)], to cracks preferentially oriented in some direc-
tion [Fig. 2(b)]. This latter configuration represents the
intermediate distribution between the liming cases of full
order [Figs. 2(a) and 2(d)] and complete disorder
[Fig. 2(c)]. The angular distribution of cracks is described
by an order parameter P (see below), while the host solid
matrix is characterized by the Young modulus E and by the
Poisson ratio v. The. present theory holds for any £ >0
and -1 <v<1/2.

Let us consider at first the case of a single crack created
into the host solid which, in turn, was previously accom-
modated in a state of constant elastic strain due to some
external load. The resulting state of strain of the cracked
solid is well described by the Eshelby theory [18]. In its
most general formulation, the Eshelby theory provides the
elastic behavior of an ellipsoidal inclusion embedded into a
matrix. The most important feature is that the internal
stress and strain fields are constant if the external strain
is constant. Such internal elastic fields can be calculated
from the external applied ones by means of the so-called
Eshelby tensor [19]. It depends only on geometrical factors
of the ellipsoidal inclusion and on the Poisson ratio v of the
host matrix. So, the Eshelby tensor contains all the physical
information needed to predict the mechanical interaction
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FIG. 1 (color online). Geometrical representation of a slit-
crack aligned along the x-axis. The half-length of the crack is
b. The host matrix has Young modulus E and Poisson’s ratio ».

between the inclusion and the matrix under external load.
For voids or cavities, the relationship between the original
applied strain €, and the induced internal strain €; is given
by &; = {I — S} '€, where I is the identity tensor and S is
the Eshelby tensor. If we consider a void shaped as the
elliptic cylinder described above, the Eshelby tensor be-
comes simply dependent on the aspect ratio e = a,/a, and
on the Poisson ratio » of the matrix [19]. We used this
result for a single crack as defined in Fig. 1, although
arbitrarily rotated around the x-axis of an angle 6. The
angle 6 has the role of a random variable symmetrically
distributed over the range (— /2, 77/2). We now define the
order parameter P = (sin’6) which completely describes
the state of order (§ = 0 or 7/2) and disorder (0 < 6 <
7r/2) of the distribution of cracks. It is easy to recognize
that P assumes special values for particular angular distri-
butions of cracks as indicated in Fig. 2. So, we computed
the average value (hereafter indicated by (-) squares) of the
internal strain (g;) over all the possible orientations: (g;) =
{1 =S} 'ey) = {I — S} ey, = Ce(, where C is the
averaged Wu’s tensor [5] depending only on e, v, and P.
We move now to the case of an actual distribution of
several cracks: we consider a region of the plane z-y having
area A and containing N elliptic inclusions with aspect
ratio e (equivalent to slit-cracks in the limit e — 0), and an
angular distribution characterized by the order parameter P
(see Fig. 2). The volume fraction ¢ of the inclusions is
given by N times the area ma.a, of the elliptic base,
divided by total area A of the region of interest, so that ¢ =
waza),N/A. Since a, = b and e = az/ay, we easily obtain
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FIG. 2. Structure of a multicracked solid with slit-cracks along
the x-axis. The order parameter P clearly indicates the state of
order [panels (a) and (d)] or disorder [panel (c)].
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the result c = 7eb?>N/A. Moreover, we can define the new
characteristic quantity & = 7b>N/A: it is dimensionless,
and it effectively represents the crack density. Hence, we
may write ¢ = ae.

We need now to compute the average value of the strain
() and of the stress (T) over the whole region of interest
(i.e., area A). To begin, we work under the hypothesis of
low cracks density so that the cracks are not interacting
with each other. Therefore, we approximate the average
value of the strain outside the cracks with the external
applied strain €, (this is strictly true for a single crack
exposed to a given external load), and we get (g) =
c(g;) + (1 — ¢)g,. By recalling the definition of the tensor
C, we finally obtain the sole approximated relation intro-
duced in the present model, namely

(e) = [(1 — ¢)I + cClg, €))

On the other hand, an exact result can be obtained for the
stress

(T) = L[(g) — cCg] 2

where L is the stiffness tensor of the homogeneous (i.e.,
noncracked) matrix and {€) is given by Eq. (1). We define
the effective stiffness tensor L.y of the cracked body
through the relation (T) = L «(€) [5,6]. By means of
Egs. (1) and (2), we obtain Lo = L{I — G[I + G]™'},
where G = lim,_,,cC and it depends on «, v, and P. This
crucial step is performed under the limiting condition e —
0 in order to take into account the actual planar geometry of
the cracks.

It is evident by the micro-geometry of the system that
the solid is elastically anisotropic: along the x-axes, we find
the alignment of slit-cracks, while along the y and z axes,
we get different elastic behaviors because of the given
orientation of the cracks. However, the three different
behaviors along the three axes lead to an orthorhombic
anisotropy for the whole system, so that

Ly L Ly O 0 0 7]
Ly Ly Lypz 0 0 0
L. — | Lsan Looss Lasss 0 0 0
eff 0 0 0 Ly, O 0
0 0 0 0 ILys O

0 0 0 0 0 Lyu]

where the relation (T;;) = L&) characterizes the mul-
ticracked solid. Here, L;j;;, are the entries of L (corre-
sponding to nine independent parameters). We can write
the closed form expressions for the stiffness tensor entries
in terms of the E, v as well as in terms of the parameters P
and « described above:

Ly = [4e?P(1 — P)(1 + »)(1 — v)?
+2(1-v)a+1—-v]D'E

Ly = (1 —»)[1+2(1 - Pa]D'E

Ly = (1 — »)[1 +2aP]D7'E

“4)

Ly =[1+2(0 - P)1 - v)a]D'E
L2233 = VD_IE L3311 = V[l + 2P(1 - V)Cl]D_lE
(%)

Ly ={1+aP)1+ )} 'E
Ly ={[1+ (1 = »)a]d + v} 'E (6)
Ly ={[1 + (1 = P)]0 + »)} 'E

where D = [4a?’P(1 —P)1 —v)?+2(1 —v)V’a+1—
2v](1 + v).

Equations (4)—(6) represent the complete characteriza-
tion of a solid with a given distribution of slit-cracks under
the sole hypothesis of low cracks density.

When the slit-cracks are uniformly random oriented in
the y-z plane, the overall multicracked material is trans-
versely isotropic (along the x-axis) and the corresponding
stiffness tensor is given by Egs. (4)—(6) with P = 1/2. As
it is well known, the number of independent entries in the
stiffness tensor decreases from nine to five moving from
orthorhombic anisotropy to transverse isotropy. Typically,
in two-dimensional elasticity, a transversely isotropic me-
dium may be used under the conditions of plane stress or
plane strain (and it appears as an isotropic material with
effective moduli E; and v ). Starting from Egs. (4)—(6)
(with P = 1/2), we may apply the iterated homogeniza-
tion method [8] that allows us to remove the hypothesis of
low cracks density. The principles of this technique are
here summarized: let us suppose that the effective moduli
of a multicracked medium are known to be E 4 and v.g.
Therefore, if a small number of cracks AN is added to the
matrix, the change in the elastic moduli is the same as in a
uniform, homogeneous matrix with moduli E.; and vgg.
When the number of additional cracks AN assumes the
role of an infinitesimal quantity, the iterated homogeniza-
tion method converges to the differential effective medium
theory [9,10]. Eventually, this approach leads to the fol-
lowing results under plane stress conditions:

E v
V2 (1= 2 ! V24 (11— v?)e
)

E.ft

A similar procedure can be followed for the plane strain
case, obtaining the effective elastic moduli as follows:
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FIG. 3. Effective Young modulus and Poisson ratio for a multi-
cracked solid under plane stress and plane strain conditions. The
plots have been derived for two different homogeneous matrices
having » = 0.35 and v = —0.7.

2v + (1 — v)e®

v 1—v)e*P(1+ v
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It is important to observe that our solutions (given by
Eq. (7) for plane stress and by Eq. (8) for plane strain)
depend exponentially on the cracks density. In Fig. 3, these
results have been represented versus the parameter a. A
comparison between the plane stress and the plane strain
cases has been drawn both for positive and negative
Poisson’s ratio.

Other approximations based on differential schemes are
found in Ref. [20], leading to a similar exponential depen-
dence. However, only the present theoretical device is
properly suited to fully characterize the effective mechani-
cal behavior observed in the two different loading condi-
tions. In fact, an interesting unconventional behavior of the
effective Young modulus of the multicracked solid has
been found for negative Poisson ratio [11] under plane
strain condition. When —1 < v < —1/2, we obtain, for
low values of «, an effective Young modulus greater than
the Young modulus of the original elastic matrix. More
precisely, the effective Young modulus in such a case has a
maximum for a = In[—3»/(1 — v)] which can be ap-
proximated as @ = —(1 + 2»)/(1 — v»), when « is small
enough. This effect is shown in Fig. 3, where a value v =
—0.7 is assumed. Our choice corresponds to the realistic
case reported for foams with » as small as —0.8 [11]. This

effect is not present under plane stress conditions. The
unusual behavior observed in plane strain conditions can
be attributed to the specific meaning of the Young modulus
in such a case: the elastically loaded plain-strain system
has fewer degrees of freedom than the system in plane-
stress because of the peculiar boundary conditions needed
to avoid the appearing of out-of-plane strain in the solid.
This means that, when one measures the Young modulus
on a given direction in plane strain conditions, some other
forces must be applied in the orthogonal directions in order
to fulfill the plain strain state, generating a very special set
of loading.

In conclusion, we have proved that the effective Young
modulus of a multicracked solid exponentially decreases
with increasing density of cracks. Moreover, for a negative
Poisson ratio, a fractured medium can be stiffer than the
original matrix under plane strain condition, contrary to
common expectations.
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