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We prove that composite materials containing an isotropic phase having negative bulk and Young’s
moduli (hence being unstable by itself ) can be stable overall, under merely applied traction boundary
conditions, if the stable encapsulating phase is sufficiently stiff. We derive specific quantitative require-
ments on the elastic moduli of the constituent materials that ensure composite stability for two
fundamental composite geometries. These results legitimize the concept of negative-stiffness-phase
composites, thus dramatically expanding the parameter landscape in which novel and optimal overall
material properties may be sought.
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Composite materials are constructed by combining two
or more materials in such a manner that the overall prop-
erties of the result are superior in some desired way to
those of the constituents individually. The attainable over-
all stiffnesses of elastic composites are restricted by rig-
orous bounds [1,2] which had been taken as inviolate for
nearly the past half-century; they are based on the assump-
tion that all constituent materials have positive stiffnesses
(positive-definite elastic modulus tensors)—e.g., for iso-
tropic phases, their tensile, shear, and bulk moduli are all
positive. However, it was recently shown experimentally
[3] and theoretically [4] that relaxing this assumption—
permitting one phase of the composite to have an appro-
priately tuned negative stiffness—can produce composite
stiffnesses that dramatically exceed these bounds, and, in
fact, are predicted theoretically to exceed the stiffnesses of
any known material [4]. Further, experiments [3] and
theory [5,6] have shown that an appropriately tuned
negative-stiffness phase can produce composite damping,
thermal expansion, piezoelectricity, and pyroelectricity far
exceeding all standard bounds. These works are indicative,
but far from exhaustive, illustrations of the fascinating
possibilities for novel materials if the use of unstable
phases is countenanced.

The key outstanding question is whether a composite
material containing an unstable phase can be stable overall,
especially in the practically important case of prescribed
load boundary conditions, since it is well known that a
negative-stiffness material is unstable by itself under such
boundary conditions.

Here we answer this question by explicitly proving for
the first time that elastic composite materials can be stable
even if they contain an encapsulated phase that has merely
strongly elliptic moduli. This legitimizes relaxation of the
positive-definiteness requirement on all phases when seek-
ing composite materials having novel and optimal proper-
ties, thus dramatically expanding the parameter landscape.
[Strong ellipticity means the fourth-rank elastic modulus
tensor C, which relates the stress and strain tensors as � �
C : ", must satisfy �ab� : C : �ab�> 0 for all dyads ab �

0; this permits negative bulk and Young’s moduli in the

isotropic material case, as shown explicitly later in
Eq. (13). Positive definiteness is the much stronger require-
ment � : C : �> 0 for all symmetric second-rank tensors
� � 0.]

The method of proof employed is direct and novel: while
typical stability analyses employ multiple-infinite-series
representations in all space variables of the perturbing field
(here, the displacement vector field), we show that use of
an energy approach together with key calculus analysis of
the general sufficient condition for stability facilitates a
stability analysis in which only one displacement compo-
nent must be expanded in a single-variable Fourier series.
The analysis is first performed for a two-dimensional
composite, where the mathematics is relatively simple
and transparent; we then show the same conceptual ap-
proach also works for a three-dimensional composite.

A sufficient condition for stability is that in any geomet-
rically possible displacement perturbation from an equilib-
rium position, the internal energy stored or dissipated must
exceed the work done on the system by the external loads
[7]. This condition ensures stability in the dynamic
Liapunov sense if the physically sensible exclusion of
unbounded strain gradients is made, the perturbing dis-
placement field and its gradient are sufficiently small, and
the body is supported against rigid-body motion [8].

We consider stability of the equilibrium unstrained
(ground) state of an elastic composite material when sub-
ject to arbitrary infinitesimal geometrically possible dis-
placement field perturbations, since our objective is to
examine material stability. For an isotropic elastic body
subject to dead loads (static loads that do not vary during
an arbitrary infinitesimal displacement), the above-stated
sufficient condition for stability is [7,8]:

 

Z
V
�2�" : "� ��tr"�2�dV > 0; (1)

where V is the volume of the body, �, � are the Lamé
elastic moduli, � being the shear modulus, and " is the
infinitesimal strain tensor ( : denoting scalar product and tr
the trace) associated with the arbitrary (but not identically
zero) kinematically admissible perturbing displacement
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field u as " � sym�ur�, the symmetric part of the dis-
placement gradient field. For simplicity and explicitness,
we will consider composite materials comprised of homo-
geneous, isotropic phases.

We analyze two fundamental composite geometries,
illustrated in Fig. 1: the two-dimensional (plane strain)
problem of an infinitely long circular cylinder of non-
positive-definite material coated with a thin layer of
positive-definite material; and the three-dimensional prob-
lem of a non-positive-definite sphere with a thin positive-
definite coating. In each case, the inclusion has radius a,
volume V1, surface S1, and elastic moduli �1 and �1; and
the layer has thickness t, volume V2, and elastic moduli �2

and �2. We emphasize that arbitrary infinitesimal kine-
matically admissible perturbing displacement fields are
treated; for example, neither axial symmetry (in the 2D

problem) nor spherical symmetry (in the 3D case) are
assumed.

The stability condition, Eq. (1), can be rewritten, appli-
cable to both the 2D (coated cylinder, k � 2) and 3D
(coated sphere, k � 3) problems explained above, as

 Z
V1

�
2�1��1� ��"0 : "0 � �! : !� �

�
�1 �

2�1

k
�1� �k� 1���

�
�tr"�2

�
dV

�
Z
S1

f2t�2" : "� t�2�tr"�
2 � 2��1tr�u� �ur� � n�gdS > 0; (2)

where ! � antisym�ur� is the infinitesimal rotation ten-
sor, "0 � "� 1

k Itr�"� is the deviatoric strain tensor, both
associated with the perturbing displacement field u;� is an
arbitrary parameter (0 	 � 	 1), introduced to permit
varying the resulting inclusion moduli restrictions over
what will turn out to be their full allowable range for
composite stability, from positive definite (� � 0) to
strongly elliptic (� � 1), so that our results will show
how the required coating moduli for overall stability will
vary as the restrictions on the inclusion moduli are varied
within this range.

To derive Eq. (2), we employed the Kelvin identity
" : " � ! : !� �tr"�2 �r 
 ��ur� 
 u� u�r 
 u��, the
divergence theorem, u continuity, and the thin-
coating assumption to approximate " as independent
of radius r in the coating. Equation (2) is the key suf-
ficient condition for stability for the two problems we
analyze.

We first analyze the plane strain coated cylinder problem
(explained above). In this case, Eq. (2) becomes, taking
k � 2, and expressing the surface integral in terms of polar
coordinates r, �, so dS � ad�:

 Z
A1

f2�1��1� ��"0 : "0 � �! : !� � ��1 � �1� ���1��tr"�
2gdA

�
Z 2�

0
fta�2�2�"

2
rr � "

2
�� � 2"2

r�� � �2�"rr � "���
2� � 2��1��ur�

2 � �u��
2 � uru�;� � u�ur;��gd� > 0; (3)

per unit thickness, where A1 is the in-plane area of V1, a subscript comma denotes partial differentiation with respect to the
subsequent subscript variable, and note that components of u and " are evaluated on r � a in the surface integral. We
employ a Fourier series representation for u� on r � a, u� �

P
1
n��1 cne

in�, c�n � �cn (overbar is the complex conjugate),
and no rigid-body motion requires c0 � c1 � 0. These and orthogonality of Fourier series show on r � a that

 

Z 2�

0
�u��

2d� � 4�
X1
n�2

�cncn;
Z 2�

0
�u�;��

2d� � 4�
X1
n�2

n2 �cncn: (4)

This shows on r � a that

 4
Z 2�

0
�u��2d� 	

Z 2�

0
�u�;��2d�: (5)

Integrating the last term in Eq. (3) by parts, while requiring u to be continuous and single-valued, using Eq. (5), and
recalling "�� � �u�;� � ur�=r, show Eq. (3) may be restated as

 

t λ1, µ1

λ2, µ2

V1 S1

V2
a

FIG. 1. Geometry and pertinent quantities for the two- and
three-dimensional problems analyzed.
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 Z
A1

f2�1��1� ��"
0 : "0 � �! : !� � ��1 � �1� ���1��tr"�

2gdA

�
Z 2�

0

�
ta�2�2�"2

rr � "2
�� � 2"2

r�� � �2�"rr � "���2� � 2��1

�
3

4
�u�;��2 � a2"2

��

��
d� > 0: (6)

Since all terms involving the perturbing displacement field in Eq. (6) are now squared, sufficient conditions on the elastic
moduli for stability under an arbitrary nonzero perturbing displacement field are that the coefficients of all different terms
be positive. The following elastic moduli sufficiency requirements for stability may thus be directly read off from Eq. (6):

 �1> 0; �1>��1����1; �2>�
a
t
�1; �2> 0: (7)

Weaker sufficient restrictions for stability are obtained by minimizing the integrand of the surface integral in Eq. (6) over
all permissible u fields:

 �1 > 0; �1 >��1� ���1; �2 >
�
2

a
t
�1; �2 >�

1� �a
t
�1

�2

1� �
2
a
t
�1

�2

�2: (8)

(Recall 0 	 � 	 1.) Restrictions on Poisson’s ratio � in each material are immediate from Eq. (8) via the relation
2�=�1� 2�� � �=�. Interpretations and implications of Eq. (8) are discussed following Eq. (11).

Next we analyze the three-dimensional coated sphere problem (explained above). Here, k � 3 in Eq. (2), whose surface
integral is expressed in spherical coordinates r, �, �, where 0 	 � 	 2�, 0 	 � 	 �, and dS � a2 sin�d�d�. Using an
approach similar to that in the plane strain case [employing integration by parts, u continuity, and requiring " to be
noninfinite at � � 0, �], Eq. (2) becomes
 Z
V1

�
2�1��1���"0 :"0��! :!��

�
�1�

2

3
�1�2���1

�
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�
dV

�
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0
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rr�"2
���"

2
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r��2"2
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�����2�"rr�"���"���2�
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�
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���"
2
���2"2

�����u�;��u�cot��2�4u2
��

1

2

�u�;�
sin�
�u�;��3u�cot�

�
2
�
u2
�;��4u2

�

sin2�

��
sin�d�d�>0:

(9)

The surface integral of the entire last bracketed quantity,
excepting the strain terms, is nonnegative since that of the
last fraction can be proved nonnegative by a Fourier series
representation for u� as a function of � at each �-value on
r � a, then performing the �-integration, just like the
logic leading to Eq. (5). Thus, from Eq. (9), we directly
read off the following sufficient stability conditions on the
elastic moduli for arbitrary nonzero perturbing displace-
ment fields:

 �1>0; �1>�
2

3
�1�2���1; �2>�

a
t
�1; �2>0:

(10)

Minimization of the surface integral in Eq. (9) over all
permissible " fields shows the following weaker conditions
are sufficient for stability:
 

�1 > 0; �1 >�
2

3
�1� 2���1;

�2 >�
a
t
�1; �2 >�

2

3
�2

1� �a
t
�1

�2

1� �
3
a
t
�1

�2

: (11)

The restrictions on the elastic moduli for composite
stability in the two-dimensional and three-dimensional

cases, Eqs. (8) and (11), respectively, are very similar
and have similar interpretations. The first two conditions
of Eqs. (8) and (11) show that the weakest possible re-
strictions on the inclusion moduli arise from the choice
� � 1; these require the inclusion moduli to be strongly
elliptic for overall stability. The second two conditions of
Eqs. (8) and (11) with � � 1 then show the coating moduli
requirements for overall stability in this case. These coat-
ing moduli requirements are significantly stronger than
positive definiteness (which would require �2 > 0, �2 >
��2 in the 2D case, and �2 > 0, �2 >�

2
3�2 in the 3D

case). Second, by varying � within the range 0 	 � 	 1,
the first two conditions of Eqs. (8) and (11) show the full
range of permissible inclusion moduli values, and their
second two conditions show the associated required coat-
ing moduli values, for overall composite stability. To sum-
marize: the results Eqs. (8) and (11) show that the two-
dimensional coated cylinder, and the three-dimensional
coated sphere composites will be stable under traction
(dead load) boundary conditions so long as the inclusion
moduli are at least strongly elliptic, and the coating moduli
are sufficiently stiff; and if one considers � to decrease
from 1 to 0, the stability requirements on the inclusion
moduli increase smoothly from strong ellipticity to posi-
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tive definiteness, while those of the coating moduli de-
crease smoothly from more restrictive than positive defi-
niteness to positive definiteness, as expected.

For the three-dimensional coated sphere composite,
Eqs. (11) imply the following restrictions on Poisson’s
ratio � and the bulk modulus K � �� 2�=3:

 K1 >�
4

3
��1;

2�1

1� 2�1
>�

2

3
�1� 2��;

K2 >
2

3
�
a
t
�1;

2�2

1� 2�2
>�

2

3

1� � a
t
�1

�2

1� �
3
a
t
�1

�2

:
(12)

As noted, the least stable permissible inclusion can have
merely strongly elliptic moduli; from Eqs. (11) and (12)
with � � 1, this comprises the following restrictions on
the isotropic elastic inclusion moduli:

 �1 > 0; �1 >�2�1; �1< �1 <
1

2
;

1< �1 <1; K1 >�
4

3
�1; �1<E1 <1;

(13)

where E � 2��1� �� is the Young or tensile modulus.
Thus we have shown that the spherical composite will be
stable for a substantial range of negative inclusion bulk
modulus K1 and for arbitrary values of the inclusion
Young’s modulus E1, for a sufficiently stiff coating [one
satisfying line 2 of Eqs. (11) or (12) with � � 1]. Figure 2
illustrates the expanded permissible regime of the inclu-
sion moduli for overall composite stability.

Although the stability results proved here are for a thinly
coated cylinder or sphere, they imply that the more general

case of a body containing a negative-stiffness inclusion can
also be stable, since adding positive-definite coating ma-
terial will not decrease the stability of the overall compos-
ite [see Eq. (1)]. The requirements on the coating moduli
for thicker coatings will almost certainly be less demand-
ing than those derived here; an analysis of this case is
underway.

Our analysis has treated the composite components as
being in an unstrained ground state. The results are valu-
able theoretically in showing that the needed composite
moduli restrictions are weaker than positive definiteness,
and thus that the bounds on overall composite response can
be evaded. In practice, some prestraining to produce a
negative-stiffness inclusion response may be necessary.
However, in many cases this will be very small (e.g., if a
constrained ceramic phase-transforming inclusion is em-
ployed to produce the negative-stiffness response), and will
further be limited by the necessarily stiff coating material.
Thus the present analysis would seem to be a sensible first-
order model of such practical situations.

The results proved here provide justification for the idea
that dramatically improved overall composite material
properties can be sought by permitting one phase to have
negative stiffness, while retaining overall stability of the
composite material. More broadly, our results suggest the
strong possibility that materials containing an unstable
phase of general type (not restricted to instability produced
by negative stiffness) can be stabilized overall, and that
therefore the search for novel and optimal overall material
properties should be greatly broadened to include the
possibly dramatic effects of controlled instability.
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FIG. 2. Bulk K versus shear � modulus plot showing ex-
panded stability regime (shaded) for inclusion material in 3D
composites with a sufficiently stiff encapsulating phase [satisfy-
ing line 2 of Eqs. (11) or (12) with � � 1].
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