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Universal Set of Quantum Gates for Double-Dot Spin Qubits with Fixed Interdot Coupling
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We propose a set of universal gate operations for the singlet-triplet qubit realized by two-electron spins
in a double quantum dot, in the presence of a fixed inhomogeneous magnetic field. All gate operations are
achieved by switching the potential offset between the two dots with an electrical bias, and do not require
time-dependent control of the tunnel coupling between the dots. We analyze the two-electron dynamics
and calculate the effective qubit rotation angle as a function of the applied electric bias. We present
explicit gate sequences for single-qubit rotations about two orthogonal axes, and a CNOT gate sequence,

completing the universal gate set.
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Electron spins in semiconductor quantum dots (QDs) are
promising candidates for encoding and manipulating quan-
tum information in the solid state. Initialization, manipu-
lation, and readout of electron spins have already been
demonstrated in these systems [1,2]. Proposals exist for
encoding one logical qubit in one [3], two [4-6], three
[7,8], or even more [9] spins. Although they differ in many
respects, a common essential ingredient of all these pro-
posals is electrical control of the two-electron exchange
interaction in a double quantum dot, which is characterized
by the singlet-triplet energy splitting J.

Conventionally, control over J is envisioned through
voltage control of the tunnel coupling ¢ between the two
dots. However, in many QD systems, such as vertical
pillars [10], self-assembled dots [11], nanowires [12], or
etched dots in Si [13], ¢ is fixed by growth or fabrication
parameters. Even for double QDs (DQDs) in electrically
gated systems, such as GaAs dots [14] and carbon nano-
tubes [15], fast control over the tunnel coupling is chal-
lenging and has not been demonstrated thus far.

A possible way around this problem was demonstrated
in a recent experiment by Petta et al. [1], where J is con-
trolled by the misalignment & between the two QDs. In
contrast to the tunnel coupling, the misalignment can
easily be changed over a wide range on a subnanosecond
time scale by pulsing the source-drain bias [16] or a gate
voltage [1]. Building on this result, Taylor et al. [17] pro-
posed a set of universal gates for a logical qubit whose ba-
sis states are the two-electron states |S) = (|11) — [11))/v/2
and |To) = (I1) + |11))/+/2. However, their scheme re-
quires J to be tunable to zero, which is not possible by
changing & alone [18]. Therefore, voltage control of ¢ is
still needed in their scheme.

Here, we propose a set of universal quantum gates for
the S — T, qubit in a constant small inhomogeneous field,
that eliminates the need for controlling the tunnel coupling
t. We demonstrate how arbitrary single-qubit rotations can
be performed at finite J, by combining Z rotations with
rotations around an axis in the XZ plane. We discuss the
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experimental requirements for this scheme and compare
them to current day devices. Finally, we outline a two-qubit
CNOT operation, which is based on a change in the rotation
angle of the target qubit that is conditional on the control
qubit through spin-dependent tunneling and the capacitive
coupling between qubits.

Tunable spin dynamics in a DQD.—Our qubit is realized
in the |0) = |S) and |1) = |T,) states of two electrons in a
double quantum dot, where S and 7|, are the lowest-energy
singlet and triplet states. The dynamics of these states can
be described by the Hamiltonian
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in the basis |Ty), (1, 1)S), [(0, 2)S), |(2, 0)S) [21]. Here, (m,
n) denotes the number m (n) of electrons in dot 1 (2), 6h is
the inhomogeneous magnetic field between the dots and U
is the difference in Coulomb energy between the (1, 1)S
and the (0, 2)S or (2, 0)S state.

Figure 1 shows the energy of the lowest eigenstates as a
function of & for 62 = 0. In this case, the eigenstates are
pure spin states for all values of & and we define the qubit
basis states as the triplet 7, and the lowest-energy singlet S,
which are separated by an energy J. At € = U, there is an
avoided crossing of the (1, 1)S and (0, 2)S states, and as a
consequence J is large at this point. In the presence of an
inhomogeneous field 6k with magnitude much smaller
than 7 (as in the inset of Fig. 1), S and T\, remain eigenstates
near € = U where J = t> dh. Far away from the
avoided crossing, however, J = 6h and therefore S and
T, are strongly mixed. As a consequence, the qubit rotates
about an axis determined by &% and J.

The qubit subspace is energetically separated from the
two remaining singlets (away from the avoided crossing,
the gap is = U). Therefore, under the condition that ¢ is
always changed adiabatically with respect to the energy
difference between the qubit states and all other states, the
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FIG. 1. Dependence of the two-electron energy levels in a
double dot on the bias £ for 84 = 0. Here, S’ denotes the first
excited singlet state. In the presence of a small fixed inhomoge-
neous field 64 (see inset), the precession axis depends on &, as
illustrated by the Bloch spheres.

Hamiltonian (1) can be reduced to the qubit subspace and,
in the qubit basis |S) and |T), has the general form

L7 sh\_ g,
_2<8~h* —J)_B o @

where we have chosen the zero of energy midway between
the states |0) and |1) and introduced a pseudospin notation
with Pauli matrices o = (o,,0,, 0,) in the two-
dimensional qubit subspace. The pseudomagnetic field is
B = (Re[64], Im[64], J)/2, where the exchange coupling
J and effective difference field 84 are functions of ¢, U, 8k,
and e. In what follows, 8h will be real and thus the
pseudofield always lies in the XZ plane (Fig. 1). The angle
of the pseudofield with the X axis is

6 = arctan(J/8h), 3)

and can be controlled by changing the electric bias &, while
keeping U, t, and 6h fixed. Single-qubit rotations can be
carried out by switching between two different values of
the electric bias &, as shown in Fig. 1. One of these working
points is chosen to lie close to the avoided crossing, |U —
e| < 1, where J = /2t > &h (Fig. 1, right). At this point,
B points into the Z direction on the Bloch sphere and has a
magnitude B = J. The other working point is chosen far
from the avoided crossing, |U — &| > t (Fig. 1, left) where

the pseudofield B lies close to the X axis and B =

\J% + 6h>. In theory, B can be made to align with X by
switching ¢ to zero. However, as we wish not to rely on this
fast control of ¢, we assume ¢ is fixed and therefore J
remains finite. Thus, we cannot reach a point where B
lies in the equator plane; i.e., we have to work with a finite
angle 6 > 0.

Single-qubit gates.—We now show that arbitrary single-
qubit rotations can be constructed from the two available
elementary operations: (i) rotations about the 6-tilted axis
by some angle y = BT, 7 being the switching time,

i sind cosf
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and (ii) nearly perfect Z rotations by ¢ = Jr = /21T,
given by the diagonal matrix U,(¢) with diagonal entries
¢%/2 and e~i¢/2. Arbitrary single-qubit rotations can be
constructed using the Euler angle method, if rotations by
arbitrary angles about two orthogonal axes are available.
Therefore, it is sufficient to show that arbitrary rotations
about the X axis, Ux(y) = exp(iyo,/2), in addition to the
Z rotations, are feasible. The three-step sequence

Ux(y) = Ug(x)Uz()Up(x), (5)
with the rotation angles [23]
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generates a rotation about the X axis by an arbitrary angle
v, aslong as 0 =< @ < 77/4. One can intuitively understand
this sequence by following the state on the Bloch sphere;
Fig. 2(a) depicts the three steps for a rotation from |S) to
|Ty) (v = 7). We note that switching between the working
points has to be performed nonadiabatically with respect to
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FIG. 2 (color online). (a) The three-step sequence Eq. (5) for X
rotations on the Bloch sphere. (b) Rotation angles y, ¢ as func-
tions of 6, producing rotations about X by y = m, 7/2, w/4.
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J. The rotation angles y and ¢ are plotted as a function of
0 in Fig. 2(b) for three different X-rotation angles . For a
m-flip about the X axis, v = a, we find the simpler ex-
pressions,

sind
Jcos26

We note that the sequence Eq. (5) is not simply one of the
known NMR sequences. Actually, in NMR it is usually not
a problem to perform rotations about an axis in the equator
plane of the Bloch sphere [24].

Doing nothing.—A convenient ‘“idle”” position would be
close to the avoided crossings € = *U, i.e., close to the
Z-gate operation point, as here only Z rotations need to be
accounted for. A disadvantage of this position is that the
qubit is more susceptible to decoherence from charge
fluctuations, due to the different orbital characters of the
basis states close to the avoided crossing [25]. The best
waiting position in terms of coherence is probably the
symmetric point ¢ = 0. However, since 64 and J are of
the same order at € = 0, the spin constantly rotates about
the pseudofield B oriented between the X and Z axes at the
angle 0 from the X axis. To erase this effect, one could
always wait for an integer number n of full periods, 7 =
27rn/B. Alternatively, a pulse sequence similar to refocus-
ing in NMR [24] can be applied,

1 =Up(x)Uz()Uy(x)Uz(), &)

where 6 and y are angles determined by the waiting
position and time, and ¢ follows from 6 and y as

x = arccos(—tan?@), ¢ = —2arctan (8)

2cos* &
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Experimental requirements.—To gain insight into the
experimental parameters, we have numerically calculated
6 as a function of ¢ at fixed values of U, ¢, and 6k by
diagonalizing (1); the result is shown in Fig. 3(a). (Explicit
expressions for J and 8k can be obtained for |U * g| > ¢
by way of a Schrieffer-Wolff transformation [26].)
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FIG. 3 (color online). (a) Angle 6 as a function of & for
different values of 6h. Here, U =4 meV and t=5 peV.
(b) Blue lines: maximum value of 64 as a function of ¢, for
different error thresholds for Z rotations. Orange lines: minimum
value of 6h as needed for X rotation, for different values of U.

Since we assume that 64 is fixed, the angle 6 will never
be exactly /2, which is required for perfect Z rotations.
The desired values of ¢t and 64 therefore depend on the
error that can be tolerated [see Fig. 3(b)], with 7 typically
exceeding 0/ by more than an order of magnitude. For the
X rotations we need § < /4, which gives Sh = J, which
can be satisfied by moving away from the avoided cross-
ing. The minimum value of 6/ needed for the X rotation is
given in Fig. 3(b) for two typical values of U. We note that
more detailed calculations including higher orbitals yield a
lower (<20%) value of J [22].

In most systems, ¢ can be set by gates or fabrication
parameters to anything between 1 peV and 1 meV. Several
methods exist for creating an inhomogeneous field &h:
(i) application of an inhomogeneous magnetic field,
(i1) different g factors in the two dots—either by compo-
sition or confinement [27]—in combination with a homo-
geneous magnetic field, and (iii) inhomogeneous nuclear
polarizations [28]. Note that the effect of a fluctuating
nuclear field can be diminished by bringing it into an
eigenstate [29]. The electrical bias &, finally, can be con-
trolled in all quantum dot systems listed in the introduc-
tion, by pulsing the source, drain or gate voltage [30].

The switching speed of the bias ¢ is limited by adiaba-
ticity constraints: switching should be sufficiently fast to
guarantee nonadiabatic switching within the qubit sub-
space, J/h < |&/e|, but not exceedingly fast, to avoid
transitions out of the computational space to the higher
orbital states, such as the singlet 8’ in Fig. 1 (|&¢/¢| < U/h,
away from the avoided crossing).

Controlled-NOT gate.—To complete our universal set of
quantum gates, we require a suitable two-qubit operation,
e.g., the controlled-NOT (CNOT, or quantum XOR) gate that
flips the target qubit (|0) < |1)) if the control qubit is in
state |1), and otherwise leaves the target unchanged. This
can be achieved by applying a bias voltage €.y, On the
control qubit, such that its charge state partly shifts to (0,2)
if the qubit state is |S), but remains mostly in (1,1) if the
state is |T,) because the (0,2) triplet state is far away in
energy [1,31]. Because of the Coulomb interaction be-
tween the control and the target qubit, the target qubit
will experience a conditional bias shift (see Fig. 4), that
can be of the same order as the interdot Coulomb energy
within a single logical qubit.

The CNOT is a conditional X rotation by y = 7, thus it is
natural to use a sequence analogous to Eq. (5),

W x(y) = We()U2()Wo(x), (11)

where y and ¢ are given in Eq. (8) in terms of 6(&) and 7 at
the conditional bias point €, induced by the charge move-
ment in the control qubit, and Uy is the single-qubit Z
rotation. The conditional rotations Wy(y) about the 6-axis
are analogous to Uy(y), but instead of being induced by a
direct manipulation of the bias ¢, they are controlled by
applying €.onwo to the control qubit, which results in a
conditional bias ¢ at the target qubit.
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FIG. 4. A cNoT is performed by electrically biasing the control
qubit, shifting its charge distribution toward the target qubit
(upper panel) if it is in a singlet state (a), but leaving the charge
distribution unchanged if it is in the triplet state (b). This leads to
a conditional shift of the working point of the target qubit (lower
panels) and to a conditional operation.

The sequence Eq. (11) for y = 7 is not a true CNOT yet,
because (i) the Z rotation U,(¢) is not conditional on the
control qubit being in state | 1), but is in fact always carried
out, and (ii) the conditional W () rotations also perform a
Z rotation in case the control qubit is in state |0). In
summary, Wy(77) does a NOT operation (X rotation by )
on the target if the control is |1) and a Z rotation by 2y + ¢
if the control is in state |0). The true CNOT operation does
nothing on the target qubit if the control is in |0); it can be
obtained with the sequence

Uenor = WX(W/Z)UX(W)WX(”T/z)UX(W), (12)

canceling the undesired phases if the control qubit is |0).

In conclusion, we have proposed a universal set of
quantum gates for the S — T, qubit, consisting of single-
qubit rotations about two orthogonal axes X and Z about
arbitrary angles combined with the CNOT gate. The elec-
trical bias € is the only parameter that needs to be tuned
fast and with high precision, which considerably relaxes
the experimental requirements compared to previous spin-
based qubit control proposals and makes our scheme ap-
plicable to virtually any quantum dot system.
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