
Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the
Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons

Marcos Rigol,1 Vanja Dunjko,2,3 Vladimir Yurovsky,4 and Maxim Olshanii2,3,*
1Physics Department, University of California, Davis, California 95616, USA

2Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, USA
3Institute for Theoretical Atomic and Molecular Physics, Cambridge, Massachusetts 02138, USA

4School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
(Received 20 April 2006; published 1 February 2007)

In this Letter we pose the question of whether a many-body quantum system with a full set of conserved
quantities can relax to an equilibrium state, and, if it can, what the properties of such a state are. We con-
firm the relaxation hypothesis through an ab initio numerical investigation of the dynamics of hard-core
bosons on a one-dimensional lattice. Further, a natural extension of the Gibbs ensemble to integrable
systems results in a theory that is able to predict the mean values of physical observables after relaxation.
Finally, we show that our generalized equilibrium carries more memory of the initial conditions than the
usual thermodynamic one. This effect may have many experimental consequences, some of which have
already been observed in the recent experiment on the nonequilibrium dynamics of one-dimensional hard-
core bosons in a harmonic potential [T. Kinoshita et al., Nature (London) 440, 900 (2006)].
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Introduction.—Integrable quantum gases traditionally
belong to the domain of mathematical physics, with little
or no connection to experiments. However, the experimen-
tal work on confined quantum-degenerate gases has re-
cently yielded faithful realizations of a number of
integrable one-dimensional many-body systems, thus mak-
ing them phenomenologically relevant. Examples include
the gas of hard-core bosons (Girardeau) [1–3], realized in
[4]; its lattice version [5] studied in our Letter, realized in
[6]; finite-strength s-wave-interacting spin-0 bosons (Lieb,
Liniger, and McGuire) [7,8], realized in [9–11] in the
mean-field regime and in [12,13] in the regime of inter-
actions of intermediate strength; and spin- 1

2 fermions
(Yang-Gaudin) [14], realized in [15]. The list has a poten-
tial to grow to include also the fermionic p-wave version of
hard-core particles [16,17]; the gas of 1=r2 interacting
atoms (Calogero and Sutherland) [18,19]; and the gas of
fermions on a lattice (Fermi and Hubbard) [20]. The ex-
periment [6]—which is a realization of the system whose
time dynamics we study in the present Letter—used an
optical lattice in the tight-binding regime [21,22]. The
technique was originally developed to reach the
superfluid–Mott-insulator transition [23] as achieved in
[24]. We should also mention the experimental studies [25]
of a related nonintegrable system, the one-dimensional
lattice bosons with finite coupling.

An integrable model possesses many nontrivial integrals
of motion, and it is natural to wonder what consequences
this fact may have for time dynamics and kinetics. Perhaps
the best known theoretical efforts in this vein are the
attempts to explain the suppression of equilibration in the
Fermi-Pasta-Ulam chains by the closeness to various inte-
grable models (see [26] for a review). Another research
direction concerns the effects of integrals of motion on the

autocorrelation properties of large systems, first studied in
[27,28] and later specialized to spin systems [29,30]. More
recent are the studies of the onset of thermalization in a
large quantum system [31,32], and, in particular, in a
mesoscopic-size Lieb-Liniger gas [33].

The major inspiration for our work—underlying espe-
cially Fig. 2 below—is the recent experiment on the
nonequilibrium dynamics of one-dimensional hard-core
bosons in a harmonic potential performed at Penn State
University [34]. There it was found that hard-core bosons
do not relax to the usual state of thermodynamic equilib-
rium. The question that intrigued us is whether neverthe-
less there exists some kind of equilibrium state to which a
many-body integrable system relaxes in the course of time
evolution from even a highly nonequilibrium initial state—
and, if so, how to predict mean values of physical observ-
ables in such a state.

Generalized Gibbs ensemble.—We start with the latter
question, for now simply assuming that an equilibrium
state exists. We conjecture that then the standard prescrip-
tion of statistical mechanics applies: one should maximize
the many-body entropy S � kBTr�� ln�1=���, subject to
the constraints imposed by all the integrals of motion.
This results in the following many-body density matrix:

 �̂ � Z�1 exp
�
�
X
m

�mÎm

�
; (1)

where fÎmg is the full set of the integrals of motion, Z �
Tr�exp��

P
m�mÎm�� is the partition function, and f�mg are

the Lagrange multipliers, fixed by the initial conditions via

 Tr �Îm�̂� � hÎmi�t � 0�: (2)

The generalized Gibbs ensemble (1) reduces to the usual
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grand-canonical ensemble in the case of a generic system,
where the only integrals of motion are the total energy, the
number of particles, and, for periodic systems, the total
momentum. Conceptually, the ensemble (1) is close to the
one E. T. Jaynes introduced in 1957 in the context of the so-
called ‘‘subjective statistical mechanics’’ [35]. Girardeau
used Jaynes’s concept to study the relaxation of magneti-
zation in the XY model [36]. Below we test the predictive
power of (1) and (2) on the example of hard-core bosons on
a one-dimensional lattice, a system integrable via Jordan-
Wigner mapping to free fermions.

The Hamiltonian and the (quasi-)momentum distribu-
tion of hard-core bosons on a lattice.—The Hamiltonian
for hard-core bosons (HCB) on a one-dimensional lattice
with L sites reads

 Ĥ � �J
XL
i�1

�b̂yi b̂i�1 � H:c:�; (3)

where
 

�b̂i; b̂
y
j � � 0; �b̂i; b̂j� � �b̂

y
i ; b̂

y
j � � 0

for all i and j � i;

fb̂i; b̂
y
i g � 1; �b̂i�2 � �b̂

y
i �

2 � 0 for all i:

Here b̂i (b̂yi ) is the annihilation (creation) operator for
hard-core bosons, and J is the hopping constant. For our
theoretical predictions we use a periodic lattice (b̂L�1 �

b̂1). However, the subsequent numerical studies are per-
formed for the more experimentally relevant hard-wall
boundary conditions. For sufficiently large lattice sizes L,
the difference between real physical quantities calculated
using these two settings is negligible [37].

Our primary observable of interest is the HCB (quasi-
)momentum distribution f�k� � hf̂�k�i, normalized to the
total number of particles N, where

 f̂�k� �
1

L

XL
i�1

XL
i0�1

e�i2�k�i�i
0�=Lb̂yi0 b̂i (4)

is the HCB (quasi-)momentum distribution operator.
Fermi-Bose correspondence.—Our bosonic system

can be mapped to a free fermionic one via the

Jordan-Wigner transformation b̂yi � ĉyi
Qi�1
i0�1 e

�i�ĉy
i0
ĉi0 ,

b̂i �
Qi�1
i0�1 e

i�ĉy
i0
ĉi0 ĉi, where ĉi (ĉyi ) is the fermionic anni-

hilation (creation) operator. (Note that since the spatial
density operators for fermions and bosons are equal to
each other, ĉyi ĉi � b̂yi b̂i, the inverse mapping is straight-
forward.) Under this transformation our Hamiltonian (3)
becomes just the Hamiltonian for noninteracting fermions
on a lattice:
 

Ĥ � �J
XL
i�1

�ĉyi ĉi�1 � H:c:�;

fĉi; ĉ
y
j g � 1; fĉi; ĉjg � fĉ

y
i ; ĉ

y
j g � 0 for all i and j:

(5)

The corresponding fermions obey periodic (antiperiodic)
boundary conditions for odd (even) numbers of particles:
ĉL�1 � ��1�N̂�1ĉ1. Here and below N̂ �

PL
i�1 ĉ

y
i ĉi �PL

i�1 b̂
y
i b̂i is the particle number operator, the same for

both fermions and bosons.
Integrals of motion.—It is clear from the fermionic form

(5) of the Hamiltonian that our system possesses as many
conserved quantities as there are lattice sites: they are
simply the fermionic (quasi-)momentum distribution op-
erators

 Î k � f̂F�k� �
1

L

XL
i�1

XL
i0�1

�i�i0 �N̂�e�i2�k�i�i
0�=Lĉyi0 ĉi; (6)

where ��i
�N� � 1 for odd N, and ��i

�N� � e�i��i=L for
even N.

Note that if expressed through the bosonic fields, the
above integrals of motion become complicated many-body
operators. Consider, for example, the lattice analog of the
fourth moment of the fermionic (quasi-)momentum distri-
bution Î4, defined as
 

1

4

�
2�
L

�
4
Î4 �

X
k

�
1� cos

2�n
L

�
2
f̂F�k�

�
3

2
N̂ �

1

J
Ĥ

�
1

4

XL
i�1

�b̂yi �1� 2b̂yi�1b̂i�1�b̂i�2 � H:c:�: (7)

It is one of the simplest linear combinations of the integrals
of motion (6), but it becomes a two-body operator in the
bosonic representation.

Fully constrained thermodynamic ensemble.—The den-
sity matrix for the fully constrained thermodynamic en-
semble described above reads

 �̂ FC � Z�1
FC exp

�
�
X
k

�kf̂
F�k�

�
; (8)

where ZFC � Tr�exp��
P
k�kf̂

F�k��� �
Q
k�1� e

��k�.
The values of the Lagrange multipliers �k must be fixed
by the requirement that the fermionic (quasi-)momentum
distribution predicted by (8) be the same as the
(quasi-)momentum distribution of fermions in the actual
initial—or, for that matter, time-evolved—state of the
system. This constraint leads to �k � ln�1�f

F�k�
fF�k� �. As we

stated above, the density matrix given by (8) is assumed to
predict correctly the values of the system’s observables
after a complete relaxation from an initial state with the
fermionic (quasi-)momentum distribution given by fF�k�.
Below, we test this conjecture numerically, using the bo-
sonic (quasi-)momentum distribution as the figure of merit.

Numerical tests.—In order to verify our predictions we
perform two series of textbooklike numerical experiments
on the relaxation of an ensemble of hard-core bosons on a
lattice from a highly nonequilibrium state. We have chosen
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to study lattices in which the final size L� N, i.e., the
average interparticle distance is much larger than the lat-
tice spacing, so that our results are also of relevance to
continuous systems [5]. The numerical technique has been
described elsewhere [38].

In the first series we prepare our gas in the ground state
of a hard-wall box, then let the gas expand to a larger
box. For all sizes of the initial box, we find that the
(quasi-)momentum distribution indeed converges to an al-
most time independent distribution (see Fig. 1). Next, we
compare the result after relaxation with the predictions of
standard statistical mechanics and of the fully constrained
ensemble (1) and (8). We find that the fully constrained
thermodynamics stands in an exceptional agreement with
the results of the dynamical propagation. (See [39] for
further details of the thermal algorithm.) The accuracy of
the above predictions has been successfully verified for the
whole range of available values of the size of the initial
box, from Lin: � N � 30 through Lin: � L � 600.

In the second series (Fig. 2) we study the effects of the
memory of the initial conditions that is stored in the fully
constrained ensemble (1) and (8). Our setting is very
similar to an actual experiment on relaxation of an en-
semble of hard-core bosons in a harmonic potential [34].
There the momentum distribution was initially split into
two peaks. After many periods of oscillation, no appre-
ciable relaxation to a single-bell distribution was observed.
In our case the system is initially in the ground state of a
superlattice (spatially periodic background potential, see
[40] for details) with period 4,

 V̂ ext � A
X
i

cos
2�i
T
b̂yi b̂i; T � 4; (9)

and is subsequently released to a flat-bottom hard-wall box
V̂ext � 0. Our results show that even after a very long
propagation time, the four characteristic peaks in the
(quasi-)momentum distribution remain well resolved,
although their shape is modified in the course of the
propagation. Our interpretation of both experimental and
numerical results is as follows: if the initial (quasi-
)momentum distribution consists of several well-separated
peaks, the memory of the initial distribution that is stored
in the ensemble (1) prevents the peaks from overlapping,
no matter how long the propagation time. Note also that the
residual broadening of the peaks seen in Fig. 2 is beyond
the experimental accuracy in [34].

Summary.—We have demonstrated that an integrable
many-body quantum system—one-dimensional hard-core
bosons on a lattice—can undergo relaxation to an equilib-
rium state. The properties of this state are governed by the
usual laws of statistical physics, properly updated to ac-
commodate all the integrals of motion. We further show
that our generalized equilibrium state carries more memory
of the initial conditions than the usual thermodynamic one.
It is in the light of that observation that we interpret the
results of the recent experiment on the nonequilibrium

dynamics of one-dimensional hard-core bosons performed
at Penn State University [34], where an initial two-peaked
(quasi-)momentum distribution failed to relax to a single-
bell distribution.

We are grateful to David Weiss, Boris Svistunov, Hubert
Saleur, Tommaso Roscilde, Rajiv R. P. Singh, and Marvin
Girardeau for enlightening discussions on the subject. This
work was supported by a grant from Office of Naval
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FIG. 1 (color online). Momentum distribution of N � 30 hard-
core bosons undergoing a free expansion from an initial zero-
temperature hard-wall box of size Lin: � 150 to the final hard-
wall box of size L � 600. The initial box is situated in the
middle of the final one. (a) Approach to equilibrium.
(b) Equilibrium (quasi-)momentum distribution after relaxation
in comparison with the predictions of the grand-canonical and of
the fully constrained (8) thermodynamical ensembles. The pre-
diction of the fully constrained ensemble is virtually indistinct
from the results of the dynamical simulation; see the inset for a
measure of the accuracy. (An animation of the time evolution is
posted online [41].)
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FIG. 2 (color online). Time evolution of the (quasi-)momen-
tum distribution (a) and the (quasi-)momentum distribution after
relaxation (b) of N � 30 hard-core bosons undergoing a free
expansion from an initial zero-temperature superlattice with
period four of half-depth A � 8J and bound by a hard-wall
box of size L � 600, to the final flat-bottom box (A � 0) of
the same size. The discrepancy between the result of time
propagation and the prediction of the fully constrained ensemble
(8) [also shown in (b)] is less than the width of the line.
Momentum peaks remain well-resolved during the whole dura-
tion of propagation; tfin: � 3000@=J for the subfigure (b). (An
animation for the time evolution can also be found in [41].)
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