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The analysis of all Casimir force experiments using a sphere-plate geometry requires the use of the
proximity-force approximation (PFA) to relate the Casimir force between a sphere and a flat plate to the
Casimir energy between two parallel plates. Because it has been difficult to assess the PFA’s range of
applicability theoretically, we have conducted an experimental search for corrections to the PFA by
measuring the Casimir force and force gradient between a gold-coated plate and five gold-coated spheres
with different radii using a microelectromechanical torsion oscillator. For separations z < 300 nm, we
find that the magnitude of the fractional deviation from the PFA in the force gradient measurement is, at
the 95% confidence level, less than 0:4z=R, where R is the radius of the sphere.
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Since the modern experimental investigation of the
Casimir force began ten years ago, most measurements
[1–8] have used a configuration that studies the interaction
of a spherical probe with a flat substrate. Because of the
difficulty of maintaining parallelism between two flat
plates, only one experiment [9] has been performed using
the parallel-plate configuration originally envisioned by
Casimir, for which the theory has been developed to a
high degree. (See Refs. [10,11] for recent reviews of the
Casimir interaction.) To compare theory with experiment,
the sphere-plate approach relies on the proximity-force
approximation (PFA) to relate the sphere-plate force to
the potential energy of two parallel plates. Specifically,
according to the PFA, the Casimir force between a sphere
of radius R and a flat plate separated by a distance z� R
can be written as

 F�z� ’ FPFA�z� � 2�REpp�z�; (1)

where Epp�z� is the separation-dependent interaction en-
ergy per unit area between two parallel plates composed of
the same materials as the sphere-plate system [12,13].
Since its introduction by Derjaguin, the PFA has been
widely used in both physics and chemistry to characterize
short-ranged forces between curved bodies [12].

Although the use of the PFA for Casimir forces has been
criticized (e.g., [14]), to date no deviations from the PFA
have been observed experimentally using the sphere-plate
geometry. This is not by accident, since the sphere-plate
experiments have been conducted in a regime (z=R� 1)
where use of the PFA is believed to be safe. Unfortunately,
the unusual nature of the PFA prevents one from easily
calculating its leading order corrections which could be
used to assess its range of applicability [15]. In the analysis
of experimental results, one presently estimates that the
fractional error arising from the use of the PFA is ’ z=R
[3,5,8], but this estimate cannot yet be supported by a
calculation from first principles. If one is to use the results

of Casimir force measurements to test theories of the
Casimir force, or to set improved limits on new
submicron-ranged forces, it is important to have a reliable
understanding of the PFA. The purpose of this Letter is to
address this problem empirically. Since the principal devi-
ations from the PFA arise from curvature, it is possible to
target experiments which isolate only these effects, thus
avoiding the necessity of calculating roughness and con-
ductivity corrections which are required in ordinary
Casimir force measurements.

We begin by developing a phenomenology based upon
the relevant length scales involved in a sphere-plate
Casimir force experiment. If the bodies are smooth and
perfectly conducting, the only distance scales are the
sphere-plate separation z and the sphere radius R.
Therefore, in this case, curvature corrections should de-
pend only on the geometric factor z=R, and one can then
expand the curvature effects of the exact Casimir force in
powers of z=R [16]:

 FCasimir�z; R� � 2�REppCasimir�z�
�

1� �
z
R
�O

�
z2

R2

��
; (2)

where � is a dimensionless parameter characterizing the
lowest order deviation from the PFA, and EppCasimir�z� is the
R-independent Casimir energy/area for two parallel plates.

Equation (2) is consistent with recent calculations of the
Casimir force for ideal smooth, perfectly conducting
sphere-plate geometries [16–22]. Shaden and Spruch
used a semiclassical approach to calculate the Casimir
energy for an ideal sphere-plate setup, obtaining correc-
tions to the PFA energy [17]. (See also Refs. [18,19].)
These results can be used to find corrections to the PFA
force, resulting in �0 ’ �0:087, where � � �0 for the
ideal geometry. Gies and Klingmüler [20,21] use a world-
line numerics approach for a scalar field satisfying
Dirichlet boundary conditions to obtain a Casimir energy,
from which one finds �0 ’ �0:175. Using an optical ap-
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proach, Scardicchio and Jaffe find �0 ’ �0:10 [16].
Although these calculations use ideal bodies, and their
authors indicate that the values may have large uncertain-
ties, they provide evidence that a phenomenology based
upon Eq. (2) is valid. (This also appears to be true for PFA
violations in a cylinder-plate geometry [21–23].)

For real bodies other length scales, which characterize
conductivity and roughness, enter and significantly modify
the ideal Casimir force for z & 1 �m. For the experiments
discussed below, we will consider only leading order ef-
fects so only the two dominant additional scales will be
considered [11]. [As demonstrated by recent Casimir ex-
periments (e.g., [8]), a much more detailed analysis is
required if one wishes to obtain a precise comparison
between theory and experiment.] If we assume as a first
approximation that both bodies are composed of the same
metal which can be characterized by the plasma model, the
relevant length scale associated with finite conductivity
corrections is the effective penetration length �p�c=!p,
where c is the speed of light and !p is the plasma fre-
quency of the metal [11]. For gold, which is used in our ex-
periments, �p � 22 nm [8]. The remaining important
length scale, which is associated with corrections due to
surface roughness, is the rms deviation of the surfaces from
the ideal, �r [11]. (Here we assume both surfaces have the
same �r.) Using atomic force microscopy, we determined
that �r & 5 nm for the spheres and substrate used in our
experiments.

Conductivity and roughness effects lead to significant
contributions to the Casimir force because the dimension-
less ratios �p=z and �r=z can become measurably large for
z & 1 �m. In contrast, the effects of roughness and con-
ductivity on violations of the PFA should be significantly
smaller since they enter through the dimensionless ratios
�p=R and �r=R, where for nearly all experiments, R� z.
(This will be made more quantitative below for our experi-
ments.) Specifically, roughness and conductivity will mod-
ify Eq. (2) in two ways. First, the parallel-plate energy
EppCasimir�z� will include these corrections as has been done
in the analysis of experiments which assumes the PFA to be
valid. Second, the leading order curvature-dependent cor-
rections arising from �p=R and �r=Rwill lead to a z depen-
dence of �. For example, in the simplest model which
generalizes Eq. (2) by incorporating additional terms in-
volving �p=R and �r=R, one finds to leading order ��z� ’
�0 � �p�p=z� �r�r=z, where �0, �p, and �r are dimen-
sionless parameters characterizing the lowest order devia-
tions from the PFA due to pure curvature, finite conduc-
tivity, and surface roughness, respectively. (For a more
detailed analysis of finite conductivity corrections to the
PFA for the cylinder-plate geometry, see Ref. [23].) The
key point, which will be used below, is to recognize that
Eq. (2) is an expansion in powers of 1=R with coefficients
(e.g., �z) that generally depend on z, roughness, and con-
ductivity, but not on R.

Because the most precise Casimir data result from the
measurement of the Casimir force gradient, rather than the

Casimir force itself [7], one needs to modify the PFA-
violation phenomenology for these experiments. It has
become customary to use the PFA to relate the experimen-
tally determined force gradient dF=dz to an effective
pressure Peff�z; R�:

 Peff�z; R� � �
1

2�R
dF
dz
; (3)

where R is the radius of the sphere used. If the PFA were
exact, then Peff�z; R� � Ppp�z�, where Ppp�z� is the pres-
sure between two parallel plates composed of the same
materials as the sphere and plate. Substituting Eq. (2) into
Eq. (3), we obtain an expansion of Peff�z; R� in powers of
z=R, giving to leading order

 Peff�z; R� � Ppp�z�
�

1� �0
z
R
�O

�
z2

R2

��
; (4)

where �0�z� is a new dimensionless parameter that is
related to � in Eq. (2) by

 �0�z� � �
�

1�
Epp�z�
zPpp�z�

�
: (5)

For smooth perfectly conducting parallel plates, Eppideal�z� �
��2

@c=720z3 and Pppideal�z� � ��
2
@c=240z4, so �0�z� �

�00 � 2�0=3 is a constant for an ideal sphere-plate setup.
For nonideal bodies, �0�z� will include small contributions
that depend on separation through Eq. (5).

To search for PFA-violating effects using the phenome-
nology developed above, we have carried out a series of
experiments using a microelectromechanical torsion oscil-
lator (MTO) to measure and compare the Casimir force
between five Au-coated spheres and a substrate. The ex-
perimental setup has been described previously in
Refs. [7,8]. For each sphere, a thin layer (	 5 nm) of Cr
was deposited, followed by 	200 nm of gold. Similar
layers were used on the plates of the MTOs. Each
sphere-MTO combination was calibrated using the electro-
static force between the sphere and plate as described in
Refs. [7,8]. In the present Letter, we report on two different
kinds of measurements. The first is a direct measurement
of the Casimir force between the sphere and the plate.
These measurements were performed between 160 and
750 nm in 10 nm intervals, and each data point is the
average of 10 different runs. Errors in positioning between
different runs are small, �z < 0:2 nm, and hence have been
disregarded (i.e., data points from different runs are con-
sidered to be at the average separation of the ten runs). The
second set of measurements determined the gradient of the
Casimir force for 164 
 z 
 986 nm in 2 nm increments.
In this case, the vertical separation between the sphere and
the plate was changed harmonically with time, leading to a
measurement of the z derivative of the Casimir force. As
described in Eq. (3), within the PFA this is equivalent to
measuring the Casimir pressure for a configuration of two
parallel plates. The normalized results for the R �
148:2 �m sphere, which are representative of the mea-
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surements from the other spheres, are shown in Fig. 1. [The
normalized force (pressure) is the observed force (pres-
sure) divided by the force (pressure) between the same
bodies, assuming that the PFA is valid, and that they are
smooth and perfectly conducting.]

We measured the force and force gradient for five differ-
ent spheres with radii R � 10:5, 31.4, 52.3, 102.8, and
148:2 �m. These radii were determined with an error of
0:2 �m by a direct measurement using a scanning electron
microscope, and also in situ through the electrostatic cali-
bration of the system [8]. The surface of each coated sphere
and MTO was characterized by means of an atomic force
microscope. The roughness was always smaller than 21 nm
peak-to-peak with variances �r & 5 nm, and the surface
morphology was very similar to our previous results [8].
Thus, at z � 160 nm, �p=R ’ 0:14z=R and �r=R ’
0:03z=R, indicating that the PFA violations from the finite
conductivity should contribute at about the 	10% level at
the shortest separations relative to the dominant z=R cor-

rections, while the PFA violations arising from surface
roughness should only contribute at the percent level. At
much larger separations, only the pure curvature effects
will be significant (until thermal corrections become
large), so ��z� ’ �0.

To search for violations of the PFA due to curvature from
these data, one could compare the measured forces and
pressures from a particular sphere-plate setup with those
predicted by a theory which assumes that the PFA is valid,
but includes all appropriate roughness and conductivity
corrections. Any discrepancies could then be compared
with those predicted by Eqs. (2) or (4). However, an alter-
native approach which is less susceptible to systematic
errors is suggested by the fact that the leading order
violations of the PFA are unique in their dependence on
1=R. If one plots the observed normalized force at a fixed z
as a function of 1=R for the five different spheres and fits a
line to the results, one can obtain � by dividing the slope of
the best fit line by its intercept multiplied by z. An analo-
gous calculation can be used for the pressure data, where
one obtains �0. Representative plots for the normalized
force and the normalized pressure at z � 170 nm are
shown in the insets of Fig. 1, and all the results for � and
�0 are displayed as functions of z in Fig. 2. The uncertain-
ties shown are statistical, which dominate for the force
case. For the pressure measurements, the largest systematic
error arises from the uncertainty in the sphere radii, leading
to an estimated total error of �0 of �0:4 for z < 300 nm.

As seen in Fig. 2, � and �0 obtained from our force and
pressure measurements, respectively, are consistent with
zero within experimental uncertainties, and exhibit no
apparent z dependence, indicating no evidence of a viola-
tion of the PFA, or of finite conductivity and roughness
corrections to the PFA. The values of � from the force
measurements provide weaker constraints on � than those
obtained for �0 from the force gradient measurements, and
the latter provide new and very useful constraints on the
errors associated with the use of the PFA in these types of
experiments. As noted earlier, in the analysis of previous
experiments it has been assumed that the relative errors
arising from the PFA are ’ z=R (i.e., �	 �0 ’ 1) [3,5,8],
but our results show that this overestimates the effect for
z & 400 nm. For z & 300, we find j�0�z�j< 0:4 at the 95%
confidence level. If we assume that �0�z� ’ 2�=3, as in the
ideal case, we obtain j�j & 0:6 for z & 300, which is
compatible with all of the theoretical predictions discussed
earlier.

In summary, it is important for a better understanding of
the Casimir force and its future applications to accurately
characterize deviations from the PFA for the sphere-plate
geometry. Because the PFA is extensively used in chemis-
try as well as in physics [12], it is clearly essential to
establish the limits of its validity. We have carried out an
experimental approach which specifically searches for de-
viations O�z=R� arising from curvature characterized by
parameters � and �0. Our results are consistent with recent
theoretical predictions and provide clear boundaries for the

 

FIG. 1. Measured values of the force (a) and effective pressure
(b), as defined by Eq. (3), obtained using the 148:2 �m sphere.
They have been normalized to the force and pressure of idealized
bodies as described in the text. The deviations from unity result
from finite conductivity and roughness corrections. The inset in
(a) exhibits the plot of the normalized force as a function of 1=R
for z � 170 nm. The value of � is obtained from the best fit line
as described in the text. The inset in (b) is a similar plot of the
normalized pressure for the measurements obtained at z �
170 nm from which �0 is obtained.
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use of the PFA in experiments by showing that the pre-
viously conjectured estimate of the error, �	 �0 ’ 1, was
conservative. Furthermore, the approach developed here
can be adapted to search for PFA violation in the cylinder-
plate geometry, as in the proposed experiment by Brown-
Hayes et al. [24]. In the future, it may also be possible to
observe PFA-violating composition effects noted recently
by Noguez and Román-Velázquez [25] that would reveal
additional novel aspects of the Casimir force.
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FIG. 2. (a) � vs z determined from the force measurements.
(b) �0 values obtained from the force gradient measurements for
the entire range of separations. (c) Same as (b), but for
164 nm< z < 400 nm. In all cases the error bars denote statis-
tical 95% confidence level intervals.
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