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We investigate the nonlinear dynamics of two coupled annular Bose-Einstein condensates (BECs). For
certain values of the coupling strength the nonrotating state with uniform density is unstable with respect
to fluctuations in the higher angular momentum modes. The Bogoliubov spectrum possesses two
branches, one of which exhibits distinct regions of instability enabling one to selectively occupy certain
angular momentum modes. For sufficiently long evolution times, angular momentum Josephson oscil-
lations spontaneously appear, breaking the initial chiral symmetry of the BECs.
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One of the most famous paradigms of quantum physics
is the existence of Josephson oscillations. They were first
predicted for superconductors separated by an insulating
layer [1]. Later, they have been observed in superfluid 3He
[2] and gaseous BECs [3,4]. Next to the oscillations of
charge and/or particles between two modes, these systems
can exhibit highly nonlinear dynamics with sometimes
surprising behavior. In this Letter, we study one-
dimensional (1D) BECs confined in two ring-shaped traps
which are sufficiently close to each other to allow tunnel-
ing through the barrier between them. We demonstrate that
the stationary state, in which only the zero angular mode is
occupied by the BECs, becomes unstable for certain values
of the coupling strength. For short propagation times, the
angular momentum in each ring is conserved. For longer
interaction times, however, angular momentum Josephson
oscillations appear. This novel type of Josephson oscilla-
tion spontaneously breaks the initial chiral symmetry of the
individual BECs. A spontaneously broken chiral symmetry
in a two-dimensional spin 1 BEC of 87Rb atoms has
recently been explored in a work by Saito et al. [5] where
the authors report a transfer of angular momentum from the
spin to the spatial degrees of freedom leading to a sponta-
neous formation of vortices. This results from a dynamic
instability which occurs at a specific ratio of the atom-atom
interaction parameters of the F � 0 and F � 1 scattering
channel. This ratio is fixed for a given atomic species. By
contrast, in two coupled annuli, the instability leading to
the chiral symmetry breaking occurs also in spin-polarized
gases and is controllable by the tunnel coupling among the
BECs. This, on the one hand, allows us to predict whether
spontaneous symmetry breaking occurs at all. On the other
hand, this constitutes a handle to selectively occupy spe-
cific angular momentum modes.

In the mean-field description, the evolution of a dilute
gas of identical interacting bosons under the influence of
the trapping potential V�r� is governed by the Gross-
Pitaevskii equation (GPE), which in cylindrical coordi-
nates reads
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where M is the atomic mass, g the nonlinear coupling
constant, � � ��r� the bosonic mean field, and Lz �
�i@@� the z-component of the angular momentum opera-
tor. The system consists of two BECs in parallel ring-
shaped traps encircling the z-axis. The positions of the
upper and lower rings are �z0, respectively. Correspond-
ingly, the trapping potential takes the form V�r� � V����
�0� � Vz�z; z0�. The first term provides harmonic radial
confinement centered at � � �0, and Vz�z; z0� creates a
symmetric double well potential with its minima at z �
�z0. Both BECs reside in the radial ground state ����� of
V���� �0�. Vertically, they occupy the harmonic ground
states ��z� z0� which are localized in the upper and the
lower well of Vz�z; z0�, respectively. The total wave func-
tion of the system can then be written as ��r� � ������
���z� z0��u��� ���z� z0��d���	 where the indices u
and d refer to the upper and lower rings. After inserting
��r� into the GPE, we obtain the two coupled equations
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that the external confinement allows an effective 1D treat-
ment of the BECs. The atom-atom interaction can then be
described by the 1D coupling constant g1D �
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Here, a is the three-dimensional s-wave scattering length
and a� the harmonic oscillator length of the radial ground
state. Equations, similar to Eq. (2) arise in the context of
two coupled elongated condensates [8]. Ring traps addi-
tionally allow the existence of stationary currents.

PRL 98, 050401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
2 FEBRUARY 2007

0031-9007=07=98(5)=050401(4) 050401-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.050401


In the angular momentum mode representation, the azi-
muthal wave function of the individual BECs can be
written according to �u=d � �2���1=2 exp�i�u=d� �P
m	

u=d
m exp�im�� with �u=d being the phase of the wave

function in the respective annulus. The coefficients 	u=dm

are normalized such that j	u=dm j2 � Nu=d
m corresponds to

the number of particles residing in the m-th angular mo-
mentum mode. Hence,

R
d�j�u=dj

2 � Nu=d corresponds to
the total number of particles in each of the two annuli.
Inserting the above expression for�u=d into Eq. (2), we find
the system of coupled equations
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with �u=d � �
d=u � �ei��d��u�. The first term represents
the kinetic energy of them-modes. The second term results
from the tunnel coupling between the annuli. Because of
their orthogonality only modes with the same m are
coupled. Coupling between different m-modes is estab-
lished by the third term which is due to the nonlinear
mean-field interaction. We now seek a stationary solution
of Eq. (3) for which in both of the annuli solely the m � 0
mode is occupied. This exists only for equal number of
particles, i.e. Nu

0 � Nd
0 � N0, and equal coupling �u �

�d � �. We then find the two solutions
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p
ei�"�����i�; 	d=um�0 � 0 (4)

with some arbitrary phase � and " � �N0

2� being the non-
linear energy due to the interatomic interaction. Hence, the
total two-dimensional wave function becomes either a
symmetric or an antisymmetric superposition of the axial
ground states of the two annuli: ���r; �� �������
N0

p
ei
���i���������z� z0� ���z� z0�	 with 
� �

"� � being the chemical potential.
In order to investigate the stability of these states with

respect to fluctuations in modes with m � 0, we make the
ansatz 	u=dm�0 � ei
���uu=dm e�i!� � v
u=dm ei!�	. Inserting
this together with Eq. (4) into Eq. (3) yields after lineari-
zation in the um and vm the eigenvalue equation
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We then find the excitation spectrum consisting of the two
branches

 !� �
���������������������������������������������������
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q
: (6)

This result is obtained for either chemical potential 
�.
The branch!� corresponds to the well-known Bogoliubov
spectrum [9] of a uniform BEC but with integer m. In this
Letter, we consider only repulsive interatomic interaction,
i.e., " � 0. Thus, !� is always a real number, and the

coupled condensates are stable against fluctuations in this
excitation branch. Note that !� is independent of the
coupling strength �. The !� branch, on the other hand,
depends on � and results from the interaction among the
coupled condensates. Its frequencies are either real or
imaginary but never complex. For zero coupling, !� is
identical with!�. If the nonlinear energy " is zero, we find
!� � m2 and !� � m2 � 2�. These frequencies belong
to states which are symmetric or antisymmetric superpo-
sitions ofm-modes of the upper and the lower annulus. The
degeneracies of these states are lifted due to the coupling
which results in an energy gap of 2�.

We now turn to the case " � 0. Figure 1 depicts for two
values of the nonlinear energy (" � 1:0 and " � 2:0) the
spectrum !� as a function of the coupling �. The blue/
solid curves represent the real part and the red/dashed
curves the imaginary part of !�. First, let us consider
relatively low energies (" < 2) [Fig. 1(a)]. Starting from
� � 0, we notice that !� is positive and real and that it
decreases monotonously to!� � 0 at � � 1=2. After this,
one enters a region where!� is imaginary with Im�!��>
0. The system is then unstable under fluctuations in the
m � �1 modes which grow at a rate of � � 2Im�!��
[5,8]. As � increases, regions of stability and instability
follow one another. The latter are defined by m2=2< �<
m2=2� ". For any given ", the maximum growth rate
�max � 2" is a universal quantity for all modes which is
independent of m and is established at the coupling
strengths � � 1

2 �m
2 � "	. Note that for sufficiently large

", the unstable regions of two adjacent m-modes may even
overlap, thus eliminating the stable region in between. This
can be seen in Fig. 1(b), where for a nonlinear energy
" � 2:0, part of the regions of instability for the m � 1
and m � 2 modes overlap. Since the coupling � is a
function of the trapping potential, and as such experimen-
tally accessible, the instability of the modes can be used to
selectively affect one or more m-modes of the rings. For
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FIG. 1 (color online). Branch !� of the Bogoliubov spectrum
of the coupled condensates plotted against the coupling strength
� for two values of the nonlinear energy " (blue/solid: real part,
red/dashed: imaginary part). In the top panel, the instable regions
are labeled with the respective m number. Because of the
symmetry of Eq. (5), the spectrum is symmetric with respect
to a sign change of m.
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example, at " � 1:0, each mode is ‘‘individually address-
able’’ through an appropriate choice of � [see Fig. 1(a)]. At
" � 2:0 and � � 2:1, on the other hand, both the m � 1
and m � 2 are unstable with respect to fluctuations.

The growth of the instable modes eventually leads to a
break down of the linearized Eqs. (5) due to the interaction
between higher lying m-modes. We therefore return to
Eq. (3) and integrate them numerically. We choose 	u=d0 �����������������������
N0 � �u=d

p
as an initial condition, i.e., an almost equal

number of atoms in the m � 0 mode of both rings, while
allowing for experimentally unavoidable particle number
fluctuations of the order of �u;d � O�

������
N0

p
�. Adding these

fluctuations has only minor influence on the numerical
results. Following Saito et al. [5], we introduce a small
seed in the lowest few angular momentum modes (up to
m � �5) with a magnitude of 10�4 �

������
N0

p
. Again, such a

fluctuation is experimentally inevitable. We truncate the set
of coupled Eq. (3) at the angular momentum mode m �
�15, well above the highest contributing mode. We veri-
fied the quality of the propagation by monitoring energy,
norm, and angular momentum conservation. Since both
annuli have a slight population difference, the nonlinear
energy is calculated according to " � �Ntot

4� with Ntot �

Nu � Nd. An example of the numerical propagation can
be seen in Fig. 2. We show the occupation Nu

m for m � 0,
�1,�2 at the nonlinear energy " � 2:0 [see also Fig. 1(b)]
for two different coupling strengths �. For � � 1:6, only
the m � �1 modes are unstable. We observe for early
times (� < 10) the predicted exponential increase in popu-
lation with a rate of � � 4. At later times, � > 9 the
population also in the m � �2 modes increases slightly.
This cannot be described by the linearized Eqs. (5).
However, in the time window considered here, the popu-
lation of the m � �1 modes is more than 2 orders of
magnitude larger than one of the m � �2 modes. In the
lower panel, we present the same plot for � � 3:2. Here,
we observe no population growth within the m � �1
modes, but Nu

�2 grows at a rate of � � 3:9. This clearly

demonstrates the possibility of a selective angular momen-
tum mode excitation by tuning �.

Let us now turn to the angular momentum of the two
BECs. The Lz expectation value of !� branch is hLuz im� �
hLdz i

m
� � 0 which implies an equal population of states

with opposite m. Conversely, for modes of the branch

!�, we find hLuz i� � hLdz i� �
m
2

����������������
m4�2"m2
p

m2�"
. However, ac-

cording to Eq. (6), the value of !� is always real, which
results in a growth rate of � � 0. In Fig. 3, we present the
angular momentum per particle and the relative particle
number difference between the coupled BECs. The non-
linear energy is again " � 2:0. The coupling is � � 2:1,
where both the m � �1 and the m � �2 are unstable.
Until � � �osc � 11, we find very small oscillations of the
relative particle difference which are of the order of 10�2.
The decompositions into m modes show that this is due to
small oscillations taking place between the m � 0 modes
of the two rings (see also Fig. 2 for � < 6). These are
‘‘ordinary’’ Josephson oscillations. Here, no formation of
currents, i.e., hLu=dz i � 0, takes place in either of the annuli.
For � > 11, the situation changes dramatically. We find
particle oscillations up to jNd � Nuj=Ntot � 0:4 and a
nonzero expectation value for hLu=dz i. The time �osc of the
onset of this regime depends on the magnitude of the initial
seed 	m. A rough estimate for �osc can be obtained from
the equation N0 � Nm � j	m�t � 0�j2 exp���osc�. These
oscillations in hLu=dz i are due to the population of !�
modes caused by the nonlinear evolution of the system.

The oscillations spontaneously emerging for � > �osc

are Josephson oscillations of the angular momentum.
They break the chiral symmetry of the initial state’s wave
function where none of the rings carried a net angular
momentum.

Finally, we turn to the experimental realizability of
the ordinary and angular momentum Josephson oscilla-
tions. For 87Rb and a ring radius of �0 � 1:2 
m, the
energy scale given by the length of the ring evaluates to
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FIG. 2 (color online). Evolution of the occupation number Nu
m

normalized to the total number of particles for the nonlinear
energy " � 2:0. For � � 1:6 (panel a), we observe an exponen-
tial population increase in the m � �1 modes. Population of the
m � �2 mode is also visible at later times but is suppressed by
more than 2 orders of magnitude. For � � 3:2 (panel b), the
accumulation in population of the m � �1 modes is suppressed,
and only the exponential growth of them � �2 modes is visible.
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FIG. 3 (color online). Angular momentum per particle in units
of @ and relative particle difference between the two annuli (" �
2:0 and � � 2:1). For � < 11, small oscillations in the particle
difference in the order of 10�2 take place. At � � �osc � 11
(dashed vertical line), we observe the onset of oscillations with
bigger amplitude which are accompanied by angular momentum
Josephson oscillations.
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E0 � kB � 2 nK, and consequently, we find a time scale of
�0 � 4 ms. For a radial oscillator length of a� � 0:3 
m,
a nonlinear energy of " � 2:0 is achieved for a particle
number N0 � 50 [10]. The experimental feasibility of
building ring-shaped traps has been demonstrated re-
cently [11,12], and further theoretical proposals for creat-
ing such a geometry exist [13,14]. We therefore hope the
results presented in this Letter might stimulate further
experiments.

The required smallness of the ring traps forbids direct
in situ imaging of the BECs. Therefore, one has to employ
time-of-flight (TOF) imaging. We consider an experiment
where initially two annular BECs are created in two un-
coupled ring traps from one single BEC. Subsequently, the
barrier in z-direction is lowered such that a certain cou-
pling strength � is established. The system then evolves at
constant � for a certain time �int after which the trap is
switched off. The TOF image is then taken after free
expansion of the cloud. Here, we assume that only the
wave function of one annulus is imaged; i.e., the atoms
in the second annulus have to be removed [15]. The TOF
method yields an image of the momentum distribution of
the BEC [16–18]. This is equivalent to the squared modu-
lus of the Fourier transform of the wave function ��r�.
Using the angular momentum mode decomposition 	m of
the annulus which is to be probed and assuming that
a�; az  R, we obtain

 ��k� /
X

m�even

��1�m=2Jjmj�kR�	meim�

�
X

m�odd

��1��m�1�=2Jjmj�kR�	meim�

with Jn being the n-th Bessel function of the first kind, k �����������������
k2
x � k

2
y

q
and � � arctan�ky=kx�. Hence, imaging j��k�j2

allows the reconstruction of the 	m for a small number of
contributing modes (for an example see Fig. 4). This allows

an experimental study of the instability regions simply by a
analyzing TOF images.

In summary, in a system consisting of two ground state
BECs in coupled rings, the occupation number of high
angular momentum modes grows exponentially for well-
defined coupling strengths. For small evolution times, a
symmetric occupation of �m modes takes place in each
BEC accompanied by ordinary Josephson oscillations of
the relative particle number. For later times, angular mo-
mentum Josephson oscillations spontaneously emerge.
This novel type of Josephson oscillation breaks the initial
chiral symmetry of the individual BECs.
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FIG. 4 (color online). Simulated TOF images for several in-
teraction times. The parameters correspond to those of Fig. 2(a).
The axes are in arbitrary units. For an interaction time of �int �
0:0, only the m � 0 mode contributes to the momentum distri-
bution yielding an image of the squared zeroth Bessel function.
At �int � 10:7, the m � �1 are occupied as well which gives
rise to an angular modulation proportional to sin2��� of the TOF
image. For later times, several angular momentum modes are
occupied. We show an example for �int � 63:5. Here, both
annuli carry a net angular momentum.
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