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Single-molecule manipulation techniques reveal that the mechanical resistance of a protein depends on
the direction of the applied force. Using a lattice model of polymers, we show that changing the pulling
direction leads to different phase diagrams. The simple model proposed here indicates that in one case the
system undergoes a transition akin to the unzipping of a � sheet, while in the other case the transition is of
a shearing (slippage) nature. Our results are qualitatively similar to experimental results. This demon-
strates the importance of varying the pulling direction since this may yield enhanced insights into the
molecular interactions responsible for the stability of biomolecules.
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The last decade has witnessed an intense activity in
experiments involving the manipulation of single biomo-
lecules. This interest has been fueled on the one hand by
the desire to understand the fundamental mechanisms at
play in biological systems, and on the other hand by the
development of revolutionary single-molecule force spec-
troscopy experiments [1–5]. These experiments provide
unexpected insights into the strength of the forces driving
biological processes and help to determine various biologi-
cal interactions as well as the mechanical stability of
biological structures. In some cases the experimental setup
also allows one to locate precisely the positions of the
forces occurring within the biomolecule [6].

The theoretical studies (numerical and analytical) which
followed the experimental efforts have mostly been con-
fined to modeling the molecule within the context of
statistical mechanics. The models use various kinds of
simplified interactions and compare the resulting theoreti-
cal predictions against the experimental findings. For ex-
ample, the most widely used models are the freely jointed
chain (FJC) and wormlike chain (WLC) models [7,8],
which describe the force-extension curves in the intermedi-
ate and high-force regimes. However, both these models
ignore crucial excluded volume effects [9], and are thus
only well suited to modeling the stretching of proteins in a
good solvent. Note that solvents relevant in a biological
context are usually poor. Therefore, these models and
numerical studies (Monte Carlo simulations) are unable
to access the low temperature regime relevant in a biologi-
cal context. Consequently, the study of the emergence of
intermediate states stabilized by a force at low temperature
is beyond the scope of these models.

Efforts have recently shifted to the experimental study of
molecular conformations of biopolymer by changing the
pulling direction [10–12]. For example, in a recent experi-
ment, Dietz and Rief [11] showed that by changing the
pulling direction (mechanical triangulation) one obtains
distinct force-extension curves from which angstrom-
precise structural information can be obtained about single
proteins in a solution. Neither the FJC or WLC models nor

the self-avoiding walk (SAW) model (which does include
excluded volume effects [9,13,14]) show any of the effects
related to a change in the pulling direction contrary to the
observations of recent experiments [11,12]. This is because
the shape of the chain conformations and the interactions
seen in these models are isotropic in nature. Notably, all the
proteins studied so far are highly anisotropic both in shape
and interactions.

In this Letter, we study the force-extension curves of
flexible and semiflexible polymers by changing the direc-
tion of the pulling force using an inherently anisotropic
lattice walk model. We show that a change in the pulling
direction [10–12] gives rise to many new intermediate
states and that the force-temperature phase diagrams are
significantly different. In order to model the anisotropy of
the biomolecules, we use a lattice model of partially di-
rected self-avoiding walks (PDSAWs) in which steps with
negative projection along the x axis are forbidden [13]. At
low temperature and high stiffness, the model mimics the
structure of � sheets [14] as seen in molecules like titin
[1,2]. The major advantage of the model is that it can be
solved exactly in the thermodynamic limit. In all single-
molecule experiments, a chain of finite size has been used
and hence in principle no ‘‘true phase transition’’ can be
observed [15]. In order to study finite-size effects, it is

 

FIG. 1. Schematic illustrations of PDSAWs on the square
lattice. One end is fixed and the other end is subjected to a
pulling force (a) perpendicular to the preferred direction (y
direction). (b) Along the preferred direction (x direction).
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essential to study first chains of finite length and then their
thermodynamic limit. The PDSAW model can be solved
exactly in the canonical ensemble for finite chain lengths
N, and using finite-size data, the thermodynamic limit of
the model can be extrapolated and compared with values
obtained from exact solutions [16,17].

The model of PDSAWs on a two-dimensional square
lattice is shown in Fig. 1. The stiffness of the chain is
modeled by associating a positive energy (�) with each
turn or bend of the walk [14]. For a semiflexible polymer
chain the extended state may be favored by increasing the
stiffness. The stretching energy Es arising due to the ap-
plied force f is taken as Es � �f�, where � is the x
component (or y component) of the end-to-end distance
[�jx1 � xNj� or �jy1 � yNj�]. This distance has been used as
the mechanical reaction coordinate that monitors the re-
sponse of the force [3] and it gives important information
about the conformation of the biomolecules.

The complete partition function of the system under
consideration can be written as ZN�Nb; �; j�j� �P
�Nb;�;j�j�CN�Nb;�; j�j�s

Nba�pj�j, where CN�Nb; �; j�j�
is the total number of PDSAWs of N steps having Nb turns
(bends) and � nearest neighbor pairs; p is the Boltzmann
weight for the force defined as exp���f � �̂��, where �̂ is a
unit vector along the x axis (or y axis); a � exp����� and
s � exp����� are the Boltzmann weights associated with
nearest neighbor interactions � between nonbonded mono-
mers and bending energy, respectively. We use the exact
enumeration technique to findCN for chains of length up to
N � 30 and analyze the partition functions. Scaling cor-
rections can be taken into account by suitable extrapolation
schemes enabling us to obtain accurate estimates in the
thermodynamic (infinite length) limit [13]. The reduced
free energy per monomer is found from the relation G �
limN!1�1=N� logZN��Nb; �; j�j��. The limit N ! 1 is
achieved by using the ratio method [13] for extrapolation.
The transition point for flexible chains (� � 0) at zero
force (p � 1), i.e., a coil-globule transition, can be ob-
tained either from a plot of G versus a, or from the peak
value of @2G

@�lna�2 . We find a � 3:336 at p � 1. This is shown

(in terms of temperature, T � 0:83) in the force-
temperature (f-T) phase diagram. The force and tempera-
ture are obtained from the expressions for the Boltzmann
weights f � log�p�= log�a� and T � 1= log�a�, respec-
tively, by setting � � �1. This value is in excellent agree-
ment with the exact value (T � 0:8205) [17]. Moreover,
this value is also quite close (within error bars of�0:02) to
the one obtained from the fluctuations in nonbonded near-
est neighbors (which can also be calculated exactly for
finiteN � 30). At zero force, the system attains the globule
(folded or � sheet) state as shown in Fig. 1 below T < Tc.
The qualitative behavior of the phase diagram (shown in
Fig. 2) is similar to the one reported in [14] for SAWs. It
should be noted that for finite N, as well as in the thermo-
dynamic limit, the phase diagrams obtained when the force

is applied along the y direction are distinctly different from
the corresponding phase diagrams with the force applied
along the x direction. Reduced temperature and force may
be expressed in real units by using the following expres-
sions: Texp � �expT=kB and fexp � �expf. Here, kB is the
Boltzmann constant and the subscript ‘‘exp’’ corresponds
to values in real units. For example, if one chooses �exp �

1 kcal=mol, then the equivalent force will be of the order of
70 pN nm.

Remarkably, for finite N the force-temperature phase
diagram shows reentrance for flexible chains, but reen-
trance is absent for semiflexible chains. However, in the
thermodynamic limit, there is no reentrance [17] for flex-
ible chains. The presence of reentrance (at finite N) may be
explained by using a phenomenological argument near
T � 0. The dominant contribution to the free energy,

 G�	 �fN� � N�� 2
����
N
p

�� NTSc; (1)

is from the first term. The second term is due to surface
corrections which vanishes in the thermodynamic limit, but
plays a very important role for finite N. The last term is a
contribution due to the entropy associated with the globule,
where Sc is the entropy per monomer. It may be noted that
for PDSAWs at T � 0, there are only two conformations
(Hamiltonian walks) which are the most compact configu-
rations and hence one does not see any reentrance in the
thermodynamic limit [17]. For T > 0, there is a finite
entropy associated with the deformed globule, which along
with the surface correction term gives rise to reentrance in
the finite chain. The critical force, fc, for N � 30 found
from Eq. (1) is equal to 0.8174 at T � 0. This value is
indicated by a black square on the y axis of Fig. 2. This is
less than 1 [17] as obtained in the thermodynamic limit
from Eq. (1).

In Figs. 3 and 4, we plot the average scaled exten-
sion for flexible and semiflexible polymer chains, re-
spectively, by using the expression: h�i=N � �1=N�
P
�C�Nb; �;��a�p�=

P
C�Nb; �; ��a�p�. The
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FIG. 2. The globule-coil phase boundary in the force-
temperature plane: (a) for flexible polymer chains and (b) for
semiflexible polymer chains. The phase diagram corresponding
to a force applied along the y direction (closed circle: finite N
and dashed line: exact phase boundary [16]) is distinctly differ-
ent from that of a force along the x direction (open circle: finite
N and solid line: exact phase boundary [17]).
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extension-force curves show multistep transitions at low
temperature corresponding to intermediate states. In the
constant force ensemble, there is an additional contribution
to the free energy proportional to the product of the force
and the extension (along the direction of the force). This
contribution stabilizes the intermediate states of the glob-
ule and hence the observed multistep behavior. Multistep
transitions have also been observed in recent experiments
[18] where the globule deforms into an ellipse and then into
a cylinder. At a critical extension, the polymer undergoes a
sharp first order transition into a ‘‘ball string’’ conforma-
tion [18]. This shows that finite-size effects are crucial in
all single-molecule experiments [19]. When the tempera-
ture is increased the multistep character of the extension-
force curve is washed out due to increased contributions
from the entropy [20]. This effect can be seen in Fig. 3.

In contrast to the FJC, WLC, or SAWs, in PDSAWs the
walk is directed along the x direction and it is inherently
anisotropic so that the perpendicular and parallel compo-
nents scale differently, namely, as

����
N
p

and N, respectively
[13]. Hence the phase boundaries for these two cases
remain distinct even in the thermodynamic limit, as shown
in Fig. 2. Here, one can also see that in order to unfold the
chain at a given temperature, one needs a stronger force
along the y axis than along the x axis.

In the case of a semiflexible chain, the response of the
force is more pronounced and the emergence of intermedi-
ate states by changing the pulling direction can be seen in
Fig. 4. From Fig. 2(b), it is evident that a much stronger
force is required for the unfolding when the force is applied
along the y axis. The physical origin of this may be under-
stood from Fig. 5, where we have plotted schematic dia-

grams, keeping x � 1 [Fig. 5(a)] and y � 1 [Fig. 5(b)], for
a fixed extension of say N=2. It is easy to see that in both
cases, the number of contacts � is the same (N=2), while
the number of turns (or bends) in Fig. 5(a) is 2 and in
Fig. 5(b) it is N=2. As stiffness helps to stabilize the
stretched state, the required force is less in the case of a
force applied along the x direction as compared to a force
along the y direction.

In the constant force ensemble the control parameter �
gets averaged; therefore, one does not find any oscillations
(sawtooth) in the control parameter in contrast to experi-
ments [1–5]. In a recent paper [15], we have shown that the
probability distribution curve of the control parameter
gives important information about the conformation of
biomolecules in the form of oscillations in the control
parameter. Keeping f and T constant near the transition
line we plot, in Fig. 6, the probability distribution curves
P�j�j� � �1=ZN�

P
Nb;�CN�Nb; �; j�j�s

Nba�pj�j as a func-
tion of �. Striking differences are apparent from these
plots. When a force is applied either along the x or y
axis, the probability distribution curve for flexible and
semiflexible chains remains smooth at high temperatures.
However, at low temperature, when a force is applied along
y axis, the emergence of peaks indicate the structural
changes in biomolecules. These features become more
apparent for semiflexible chains, where we find peaks at
much higher temperature. This may be understood in the
following way: If force is applied along the x axis, the loss
of one monomer contact gives a unit of extension along the
x axis. However, when force is applied along the y axis,
there a loss of either one or two contacts always gives two
units of extension along the y axis. This clearly shows that
by changing the pulling direction one can obtain better
semimicroscopic information about the conformation of
biomolecules. The features observed here should not be
viewed as artifacts of the lattice model, because they
appear only when the direction of pulling force is changed.

It is interesting to compare the qualitative features of our
results with the ones obtained in experiments [11,12]. First,
we note that in one case (Refs. [11,12]), the system under-
goes a shearing kind of transition for which the applied
force is higher. This is the case [Fig. 1(a)] when a force is
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FIG. 4. Same as Fig. 3, but for the semiflexible chain.

 

FIG. 5. Schematic of two cases (having N=2 contacts and N=2
extension) where a force is applied along (a) the y direction;
(b) the x direction.
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FIG. 3. (a) The average scaled extension of a flexible polymer
chain as a function of the pulling force f at different tempera-
tures: (a) along the x direction; (b) along the y direction.
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applied along the y axis. In the other case, it undergoes a
�-sheet unzipping kind of transition for which the applied
force is less. This is reflected in Fig. 1(b), where we find
that the critical force is less. Our results provide strong
evidence that saw-tooth-like oscillations are enhanced in
force-extension curves due to the shearing (slippage) kind
of transition. This can also be seen in experiments, where
the peaks of sawtooth are much larger for shearing like
transitions compared to the unzipping of �-sheets. At this
moment additional analytical and computer simulation
work is required for a deeper understanding of the role of
anisotropy in the stability of biomolecules.

It may be noted that the conformation of biomolecules
remain unchanged by changing the direction of the force in
the model discussed here. However, in experiments, by
fixing one end only, the entire molecule will rotate due to
the torque about the fixed end of the chain. In order to see
effects predicted by the model, one has to fix not only the
end point (as discussed above) but one more point in the
chain. This will ensure that rotation will not take place
around the fixed end due to the change in direction of the
applied force. A force may be applied at the other end of
the chain either along the direction of the line connecting
these points or perpendicular to this line. By changing the
position of the second point, one may get enhanced insight
into the molecular interactions.

In conclusion, we have clearly demonstrated that finite-
size effects are crucial in understanding the experimental
phase diagram and that there are many intermediate states
at low temperature. Moreover, by considering a simple
model which takes into account the anisotropy of biomo-
lecules, we have shown for the first time that changing the
pulling direction gives distinct force-temperature curves
even in the thermodynamic limit. When a force is applied
along the preferred direction, we observe the unzipping or
opening of�-sheets layer by layer. However, when force is
applied perpendicular to the preferred direction, we see the
effects of slippage (shearing). It is evident from our studies
that the mechanical resistance of biomolecules, e.g., pro-
teins, is not dictated solely by the amino acid sequence or
unfolding rate constant but depends critically on the topol-
ogy of the biomolecules and on the direction of the applied
force.
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