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NiCl,-4SC(NH,), (DTN) is a quantum S = 1 chain system with strong easy-pane anisotropy and a new
candidate for the Bose-Einstein condensation of the spin degrees of freedom. ESR studies of magnetic
excitations in DTN in fields up to 25 T are presented. Based on analysis of the single-magnon excitation
mode in the high-field spin-polarized phase and previous experimental results [Phys. Rev. Lett. 96, 077204
(2006)], a revised set of spin-Hamiltonian parameters is obtained. Our results yield D = 89K, J, =
2.2 K, and J,, = 0.18 K for the anisotropy, intrachain, and interchain exchange interactions, respectively.
These values are used to calculate the antiferromagnetic phase boundary, magnetization, and the
frequency-field dependence of two-magnon bound-state excitations predicted by theory and observed
in DTN for the first time. Excellent quantitative agreement with experimental data is obtained.
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Antiferromagnetic (AFM) quantum spin-1 chains have
been the subject of intensive theoretical and experimental
studies, fostered especially by the Haldane conjecture [1].
Because of quantum fluctuations, an isotropic spin-1 chain
has a spin-singlet ground state separated from the first
excited state by a gap A ~0.41J [2], where J is the
exchange interaction. As shown by Golinelli et al. [3],
the presence of a strong easy-plane anisotropy D can
significantly modify the excitation spectrum, so that the
gap size is not determined by the strength of the AFM
quantum fluctuations exclusively, but depends on the di-
mensionless parameter p = D/J. The Haldane phase is
predicted to survive up to p. = 0.93 [4], where the system
undergoes a quantum phase transition. For p > p_. the gap
reopens, but its origin is dominated by the anisotropy D,
and the system is in the so-called large-D regime. While
the underlying physics of Haldane chains is fairly well
understood, relatively little is known about the magnetic
properties (and particularly the elementary excitation spec-
trum) of non-Haldane S = 1 AFM chains in the large-D
phase. Intense theoretical work and numerous predictions
[3-10] make the experimental investigation of large-D
spin-1 chains a topical problem in low-dimensional
magnetism.

Recently, weakly coupled spin-1 chains have attracted
renewed interest due to their possible relevance to the field-
induced Bose-Einstein condensation (BEC) of magnons.
When the field H, applied perpendicular to the easy plane,
exceeds a critical value H.; (defined at T = 0), the gap
closes and the system undergoes a transition into an
XY-like AFM phase with a finite magnetization and
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AFM magnon excitations. If the spin Hamiltonian has axial
symmetry with respect to the applied field, the AFM order-
ing can be described as BEC of magnons by mapping the
spin-1 system into a gas of semi-hard-core bosons [11].
The applied field plays the role of a chemical potential,
changing the boson population. In accordance with mean-
field BEC theory [12-14], the phase-diagram boundary for
a three-dimensional system should obey a power-law de-

pendence, H — H,; ~ T2/2, as T — 0. Above the upper
critical field, H., (defined at T = 0), the system is in a
fully spin-polarized (FSP) phase, and the excitation spec-
trum is formed by gapped magnons.

The compound NiCl,-4SC(NH,), [dichloro-tetrakis
thiourea-nickel(II), known as DTN] is a new candidate
for studying the BEC phenomenon in magnetic fields. It
has a tetragonal crystal structure, space group /4, with two
molecules in the unit cell [15,16]. The anisotropy, intra-
chain, and interchain exchange parameters, D = 8.12 K,
J.=174K, and J,, = 0.17 K, respectively, were ob-
tained from a fit of zero-field inelastic-neutron-scattering
data [17] using generalized spin-wave theory [18]. It was
shown that the Ni spins are strongly coupled along the
tetragonal axis, making DTN a system of weakly interact-
ing S = 1 chains with single-ion anisotropy larger than the
intrachain exchange coupling. Recently, it was proposed
[16,17] that the field-induced low-temperature transition of
DTN to the AFM-ordered state can be interpreted as a BEC
of magnons, with valuesof H,; = 2.1 Tand H., = 12.6 T
for the lower and upper critical fields, respectively.
Although the observed overall picture is consistent with
the BEC scenario, some questions remain. One of the
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unsolved problems is a pronounced (about 2 T) disagree-
ment between the value for the upper critical field obtained
experimentally and the predicted one (H,, = 10.85 T)
[17]. This discrepancy is rather puzzling, particularly in
light of the excellent agreement for H,;.

In this Letter, we report electron spin resonance (ESR)
studies of the elementary excitation spectrum in DTN in
magnetic fields up to 25 T (~2H,,). A distinct advantage
of the high-field approach for determining the spin-
Hamiltonian parameters of spin-1 AFM chains is the avail-
ability of exact theoretical expressions for the spin-
polarized phase. Analysis of the high-field single-magnon
branch has allowed us to obtain the precise value for the
anisotropy parameter, D = 8.9 K. Using results of recent
thermodynamic and neutron-scattering measurements
[16,17], we were able to refine the exchange parameters,
obtaining J. =22 K and J,;, = 0.18 K for intra- and
interchain exchange interactions, respectively. In addition,
we present magnetocaloric-effect and low-temperature
magnetization data allowing us to check the obtained set
of parameters. These values agree well with those obtained
by fitting the AFM-phase boundary and the magnetization
with results of quantum Monte Carlo simulations, and
nicely reproduce both critical fields, H.; = 2.1 T and
H., = 12.6 T. Furthermore, we report on the first direct
and reliable observation of the two-magnon bound states in
spin-1 AFM chain system with strong easy-plane anisot-
ropy, predicted by theory [9] for the high-field spin-
polarized phase. Using the obtained parameters of the
spin-Hamiltonian we were able to calculate frequency-field
dependences of the two-magnon bound-state excitations.
Excellent quantitative agreement between the theoretical
predictions and experiment is obtained.

The investigation of the magnetic-excitation spectra in
single-crystalline DTN samples was done using a tunable-
frequency submillimeter-wave ESR spectrometer [19] with
external field H applied along the tetragonal c axis.

In sufficiently small fields, a spin-1 Ni(Il) system is
in the quantum-paramagnetic (QPM) phase, having the
M, = 0 ground state. The excitation spectrum is gapped
and determined by the AM,; = *1 transitions. For fields H
applied perpendicular to the easy plane, the Hamiltonian
can be written as

H = 31,8;5Sjre, + DD + gupHST) (1)
v J

where v = {a, b, c}. A corresponding dispersion of low-
field magnetic excitations is shown schematically in Fig. 1
(left). Then, the frequency-field dependence of the AM, =
+1 ESR transitions can be written as @*/8 = A = guzH,
where A corresponds to the energy gap at kK = 0 and H =
0. These transitions were observed in our experiments and
are denoted in Fig. 2 by circles [20]. The zero-field split-
ting measured directly yields A = 269 GHz, which agrees
quite well with results of neutron-scattering measurements,
Ax—o = 1.1 meV [17]. No splitting within the excited
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FIG. 1 (color online). A schematic view of the magnetic-
excitation dispersion in an S = 1 Heisenberg chain with strong
easy-plane (D > 0) anisotropy for two arbitrary fields, H < H,,
(left) and H > H, (right), with a magnetic field applied along
the principal axis z. Note that the ESR transitions denoted by A,
B, C, E, and F occur at k = 0. Two-particle continua predicted
for both regions are not shown for simplicity.

doublet in zero field was observed, which indicates the
absence of noticeable in-plane anisotropy. From the slope
of the frequency-field dependences of the branches A and
B, the g factor was determined directly, g = 2.26 [21].
As mentioned before, when the magnetic field exceeds
the upper critical field, H,,, the system is in the fully spin-
polarized state [a corresponding dispersion of low-energy
magnetic excitations is shown schematically in Fig. 1
(right)]. Excitations from the ground state to the single-
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FIG. 2 (color online). Top: Typical ESR transmission spectra
in DTN, taken at frequencies of 216.9, 294.4, and 683.3 GHz at
T = 1.6 K, H || c. Bottom: Frequency-field dependence of mag-
netic excitations in DTN, taken at temperatures of 1.6 K (modes
A, B, C, and E) and 4.3 K (mode F), H || c. Symbols denote the
experimental results, and lines correspond to results of calcu-
lations (see text for details).
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magnon state have been observed in our experiments and
are denoted by squares in Fig. 2 (the resonance C). These
excitations correspond to a single-spin flip from the S, =
—1 to S, = O state and are uniformly delocalized over the
entire lattice with a well-defined momentum k. The S, = 0
state propagates along the lattice as a free quasiparticle
with hopping J, along the » direction (v = {a, b, c}),
which arises from the transverse part of the Heisenberg
interaction. There are also diagonal energy gains of
—2(J. + 2J,) due to the Ising part, and —D due to the
single-ion anisotropy. The diagonal energy cost comes
from the Zeeman interaction gugH. Then, the single-
magnon excitation dispersion can be calculated exactly:

w(k) = gugH —D —2(J. +2J,)
+ 2(J, cosk, + J, cosk, + J, cosky).  (2)

The ESR transitions taking place at k = 0 have the fre-
quency wc = gugH — D. The best fit of the ESR data
denoted by squares in Fig. 2 reveals D = 8.9 K for the
anisotropy constant. From the exact expression for H,,,
given as [17]

1
H,=——-|[D+4 J), 3)
? 8#3( ;n

and using H., = 12.6 T [16,17], we obtain ), J,, = J. +
2J, = 2.557 K. The zero-field dispersion of magnetic ex-
citations calculated using neutron-scattering data [17]
yields J,/J. = 0.082. Thus, in addition to the anisotropy
constant D = 8.9 K, all three exchange parameters, J,. =
22K and J, =J, =0.18 K, can be calculated quite
precisely.

The phase boundary (obtained from magnetocaloric-
effect measurements) and the field dependence of the
magnetization at 7 = 16 mK were computed for the ob-
tained set of parameters by means of a quantum
Monte Carlo simulations for a finite lattice of L3 sites, L =
16. Figure 3 shows a very good agreement between the
calculated (solid symbols) and experimental (open sym-
bols) data.

In addition to ordinary single-magnon states and two-
magnon continuum, the theory [9] predicts the existence of
two-magnon bound states (sometimes referred to as single-
ion bound states [5]). The physical picture of the two-
magnon bound-state excitations corresponds to a double-
spin-flip transition from S, = —1 to S, = +1. The trans-
verse part of the Heisenberg term of J{ mixes this state
with the one that has a pair of S, = O states. Since the
diagonal energy difference between these two states, 2D, is
much bigger than J. and J, (associated with hopping in the
¢ and a directions), the distance between the two S, = 0
sites remains finite, giving rise to a two-magnon bound
state. The two-magnon bound states appear to be a specific
feature of anisotropic spin-1 Heisenberg systems. It is
worth mentioning that the two-magnon bound states were
already predicted in 1970 by Silberglitt and Torrance [5]
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FIG. 3 (color online). Temperature-field diagram of the AFM-
ordered phase obtained from magnetocaloric-effect measure-
ments (open squares), and the magnetization data taken at T =
16 mK (open circles), H |l c. Results of the quantum
Monte Carlo calculations of the phase-diagram boundaries and
the magnetization using the set of parameters obtained as
described in text are denoted by solid squares and circles,
respectively.

for Heisenberg ferromagnets with single-ion anisotropy.
Later on, this subject attracted a great deal of attention
due to its potential relevance to the intrinsic localized spin
modes in anisotropic ferromagnets [22] and antiferromag-
nets [23]. It was suggested [9] that the two-magnon bound
states should make a distinct contribution to the excitation
spectrum of S = 1 large-D AFM chains above the upper
critical field H ., and that their effect can be unambiguously
identified by ESR measurements. A signature of two-
magnon bound states was obtained by means of high-field
ESR in the spin-1 chain compound Ni(C,HgN,),Ni(CN),
(known as NENC) [24]. A broad absorption was detected
in the high-field spin-polarized phase. Based on analysis of
the temperature dependence of the ESR intensity, this
feature was interpreted as transitions from the single-
magnon to two-magnon bound states.

Here we report on the first observation of transitions
from the ground state to two-magnon bound state in a spin-
1 AFM chain system with strong easy-plane anisotropy in
the high-field FSP phase. The corresponding excitations
are denoted by triangles in Fig. 2 (bottom) [the resonance
E, Fig. 2 (top)]. The frequency-field dependence of the
ground-state two-magnon bound-state excitations can be
calculated exactly using the set of parameters obtained as
described above. Results of corresponding calculations are
shown in Fig. 2 (bottom) by line E. One more resonance
absorption was observed at higher temperatures (which
indicates transitions within excited states). The corre-
sponding data obtained at 7 = 4.3 K are denoted in
Fig. 2 (bottom) by stars. This ESR mode corresponds to
transitions from single-magnon to two-magnon bound
states [Fig. 1 (right)], which occur at k = 0. The
frequency-field dependence of these transitions can be
calculated, using the expression wp = wp — wo (Where
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wg and w are the excitation frequencies for the modes E
and C, respectively), and is denoted in Fig. 2 by line F. In
both cases, excellent agreement with experimental data
was achieved, which shows that our model actually works
fairly well up to 7'~ J.

Let us now discuss the low-field quantum-paramagnetic
phase. As mentioned before, in this phase the system has
the M, = 0 ground state and a gapped excitation spectrum
formed by AM, = =1 transitions. Using the spin-wave
theory [18] and the set of parameters obtained as described
above, the frequency-field dependence of the ESR transi-
tions can be calculated using the expression [17]

WAB = [+ 47> Jy = gupH. (4)
n

The parameters u = 10.3 and s> = 0.92 can be obtained
from the self-consistent equations:

D=,u,<1 +Lzﬁ> )

Ns K g
and
1 + 52
2=2-_SEIT (©)
NS K Wk
where 1y, =25 ,J,cosk, and wy = wﬁ/B(H =0).

Equation (4) predicts a value of H,; = 2 T, which is in
fact in relatively good agreement with the experimental
value H., = 2.1 T. The results of the calculations are
presented by lines A and B in Fig. 2 (bottom) together
with experimental data denoted by circles. The agreement
in this case is reasonably good, considering that the quasi-
one-dimensional nature of the system causes pronounced
quantum fluctuations of the AFM-order parameter in the
low-field QPM phase.

In summary, a systematic ESR study of the magnetic
excitations in DTN, an S =1 Heisenberg AFM chain
material in the large-D regime, has been presented.
Investigation of the high-field magnon excitations allowed
us to obtain a reliable set of the spin-Hamiltonian parame-
ters, which was employed to calculate the ESR spectrum in
a broad range of magnetic fields and frequencies. These
values agree very well with the ones obtained from fitting
the AFM-phase boundary and low-temperature magnetiza-
tion of DTN with results of quantum Monte Carlo simula-
tions, including both critical fields. The parameters were
used to calculate the frequency-field dependence of two-
magnon bound-state excitations, predicted by theory and
observed in DTN for the first time. Excellent agreement
between the theory and experiment was obtained.
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