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Fermi-Pasta-Ulam recurrence through soliton dynamics has been realized. The experiment used a
magnetic film strip-based active feedback ring. At some ring gain level, a wide spin wave pulse is self-
generated in the ring. As the pulse circulates, it separates into two envelop solitons with different speeds.
When the fast soliton catches up and collides with the slow soliton, the initial wide pulse is perfectly
reconstructed. The repetition of this process leads to periodic recurrences of the initial pulse.
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The unexpected recurrence of a nonlinear system back
to an initial state was first discovered by Fermi, Pasta, and
Ulam (FPU) in 1955 through the simulation of a one-
dimensional lattice [1]. This FPU recurrence paradox was
initially characterized by Fermi as a ‘‘little discovery.’’
This discovery, in fact, marked a true sea change in modern
science [2]. On the one hand, it ushered in the age of
computational science through the introduction of com-
puter simulation for the first time. At the same time, it
marked the birth of nonlinear science. It led to both the
discovery of solitons and the widespread awareness of
deterministic chaos.

The FPU recurrence paradox remained a complete mys-
tery until Zabusky and Kruskal (ZK) discovered solitons in
1965 [3]. In an attempt to solve the FPU paradox, Zabusky
and Kruskal reduced the FPU problem to the Korteweg–
de Vries (KdV) equation based on a so-called continuum
approximation and numerically discovered solitons. In
terms of soliton dynamics, they explained that with time,
a large-amplitude periodic wave described by the KdV
equation can break up into a family of solitons with differ-
ent speeds. When the fast solitons catch up and collide with
the slow solitons, there is a reconstruction of the initial
periodic wave.

The ZK 1965 work did even more than provide the first
solution to the FPU paradox and mark the birth of soliton
science. It also showed, at least theoretically, that one can
actually realize FPU recurrence through the excitation of a
large-amplitude periodic wave in a soliton-supporting non-
linear system. Attempts to realize such a FPU recurrence
experimentally have been made for periodic waves in
electrical networks [4], plasmas [5], and magnetic films
[6]. Here, the breakup of the initial pulses into solitons and
the subsequent overtake and collision of these solitons
were observed. Bona fide recurrence, however, was not
observed. First, the recurrence to the initial state was not
exact because of energy decay. In addition, the energy
decay also precluded the realization of more than a single
recurrence. It is to be emphasized that the main reason for
these failures lies in the dissipation present in the systems.

This Letter reports on the realization of an exact and
periodic FPU type of recurrence. This has been achieved
through the novel use of feedback to circumvent the dis-
sipation problem. Specifically, one starts with a nonlinear
pulse in a soliton-supporting one-dimensional medium.
One then feeds the amplified output signal back to the
input to produce a soliton-supporting ‘‘conservative’’ non-
linear ring system. Here, the conservative does not mean
that the ring system is free of dissipation. Rather, it means
that the wave dissipation is compensated by the active
feedback. A circulating pulse in such a ring is topologically
equivalent to a periodic wave train in a one-dimensional
conservative system as studied in the ZK work [3]. As
such, the nonlinear pulse experiment in such a ring is
expected to show a true dissipation free recurrence
response.

The experiment used a magnetic film strip–based active
feedback ring. The magnetic film strip served as a non-
linear dispersive medium for the propagation of spin waves
[7,8]. The propagation geometry was chosen to give an
attractive or self-focusing nonlinearity that supports the
formation of bright spin wave envelope solitons [9]. The
active feedback allowed for the self-generation of a wide
spin wave pulse. As the pulse circulates in the ring, it
separates into two envelope solitons with different speeds.
After many circulations, the fast soliton catches up and
collides with the slow soliton and the initial wide pulse is
perfectly reconstructed. The repetition of this soliton pro-
cess leads to periodic recurrences of the initial pulse.
Remarkably, the splitting of the initial pulse into separate
solitons and the recombination of these solitons to reform
the initial pulse over and over again is in nearly perfect
agreement with the ZK prediction.

Figure 1 shows the experimental setup. The magnetic
yttrium iron garnet (YIG) film strip is magnetized to satu-
ration by a static magnetic field parallel to the length of the
strip. This configuration allows for the propagation of
backward volume spin waves [7–9] and the formation of
bright spin wave envelope solitons [9]. Two microstrip
transducers are placed over the YIG strip for the excitation
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and detection of spin waves. The detection transducer is
connected to the excitation transducer through a linear
broadband microwave amplifier to form an active feedback
ring. The ring gain is controlled through an adjustable
microwave attenuator. The ring signal is sampled through
a directional coupler and is analyzed with a broadband
microwave oscilloscope. For the data shown below, the
YIG film strip was 10.8 mm thick, 2 mm wide, and
37 mm long. The magnetic field was held at 970 Oe. The
microstrip transducers were 50 mm wide and 2 mm long.
The separation between the transducers was set to be
5.7 mm.

The feedback ring system can have a number of reso-
nance eigenmodes that exhibit low decay rates. For a
magnetic film feedback ring, the eigenmode frequencies
are determined by the phase condition k�!�l��0 � 2�n
where k is the spin wave wave number, ! is the spin wave
frequency, l is the transducer separation, �0 is the phase
shift introduced by the feedback circuit, and n is an integer.
The eigenmode frequencies and their spacing can be ad-
justed through a change in the k�!� dispersion function
and/or the transducer separation l. The dispersion function,
in turn, can be controlled through the film parameters and
the magnetic field [7]. At a low ring gain G, all of these
eigenmodes experience an overall net loss and there is no
spontaneous signal in the ring. If the ring gain is increased
to a certain threshold level, here taken as G � 0, the
eigenmode with the lowest decay rate will start to self-
generate and one will obtain a continuous wave response at
this eigenmode frequency. A further increase in the ring
gain results in the generation of additional modes through a
four-wave process. In the time domain, this corresponds to
the formation of a spin wave pulse that circulates in the
ring. The circulation period is given by the sum of the spin
wave propagation time l=vg in the film, where vg is the
group velocity, and the signal propagation time t0 in the
feedback circuit. Typically, the time l=vg is on the order of
100 ns, while the time t0 amounts to a few nanoseconds at
most [10,11].

The power of the circulating spin wave pulse increases
with the ring gain. At some threshold power for which the
nonlinearity is strong enough for the nonlinearity-induced
pulse narrowing to balance the dispersion-induced pulse

broadening, the pulse evolves into an envelope soliton
[12,13]. With a further increase in the ring gain, the pulse
power becomes too high to maintain a single soliton state
and the pulse breaks up into two solitons with different
speeds. The slow overtake and subsequent collision of
these two solitons produce the FPU recurrence that is
demonstrated below.

Figure 2 shows output signals for three different ring
gain levels. Graphs (a), (b), and (c) show power versus time
profiles measured atG � 0:2, 0.3, and 0.6 dB, respectively.
For easy comparison, the three signal traces are shown with
the same power and time scales. Graph (d) shows expanded
displays of the two pulses at 60 ns and 2920 ns from (c).
Graph (e) shows the carrier waves for the two pulses in (d).
The curve shows a sine function fit to the data.
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FIG. 2. Graphs (a), (b), and (c) show the power versus time
profiles measured at ring gains of G � 0:2 dB, 0.3 dB, and
0.6 dB, respectively. Graph (d) shows the two pulses at 60 and
2920 ns from (c) on expanded scales. Graph (e) shows the carrier
waves for the two pulses in (d). The curve shows a sine func-
tion fit.

 

FIG. 1. Diagram of YIG strip-based active feedback ring
system.
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The data in Fig. 2 demonstrate the realization of the FPU
recurrence. In (a), one has a uniform pulse train that
corresponds to a stable circulation of a single spin wave
pulse in the ring. With an increase in the ring gain to
0.3 dB, as in (b), the amplitude of the pulse increases while
the width of the pulse decreases. Indeed, the half-power
width decreases from about 33 ns for G � 0:2 dB to about
24 ns for G � 0:3 dB. Such a self-narrowing effect results
from attractive nonlinearity, and the circulating pulse now
corresponds to a spin wave envelope soliton. The soliton
nature of this pulse is confirmed by the hyperbolic secant
shape [12,13] and a constant phase profile [14].

With a further increase in the ring gain to 0.6 dB, the
pulse loses its soliton nature and evolves into a wide pulse.
This corresponds to the leftmost pulse in (c). Its amplitude
is about the same as for the soliton in (b). Its width of about
60 ns, however, is significantly larger than the width of the
soliton in (b). This wide pulse is not stable [15,16], and it
gradually breaks into two solitons after several round trips.
This breakup is evident from the left half of the trace in (c).
Note that the leading soliton is taller than the initial wide
pulse, while the trailing soliton is shorter. Here too, the
soliton nature of these pulses is evident from their hyper-
bolic secant shapes and constant phase profiles, as well as
additional soliton signatures considered below. One critical
point is that these solitons have amplitude-dependent
speeds; the tall soliton travels faster than the short soliton.
Because of this property, the tall soliton catches up and
collides with the short soliton after several round trips. This
is evident from the right part of the trace in (c). This
process leads, in turn, to a perfect recurrence through a
matchup of the left and right most pulses in (c). This
perfect matchup is made even clearer from the superim-
posed responses in (d). The carriers also match. This is
evident in (e) where both carrier waves are nicely fitted by
one and the same sine function.

These results provide a perfect demonstration of FPU
recurrence. One key for such a realization lies in the
amplitude-dependent speed property of the solitons, just
as predicted by Zabusky and Kruskal [3]. It is this
amplitude-dependent speed that makes the slow overtake
possible. A second key element of the process is the active
nature of the ring. Without the amplified feedback, pulse
decay would dominate the response, and the recurred
pulse, if any, would have a much lower amplitude. It is
this ring feature that makes the perfect recurrence possible.

Since solitons can survive collisions with other solitons
[3,12], one would naturally expect that the repetition of the
soliton collision process described above and the periodic
recurrences to the initial pulse could occur for a very long
time. Figure 3 shows that such an extended recurrence can
actually be realized. Graph (a) shows the ring signal over a
relatively long period of 10 �s. The experimental condi-
tions are the same as for the data in Fig. 2(c). Graphs (b)
and (c) show plots of the corresponding tall and short
soliton peak times versus the number of round trips, re-
spectively. The circles, triangles, and squares show the data

for the solitons before the first collision, after the first
collision, and after the second collision, respectively. The
solid, dashed, and dotted lines are linear fits to the circle,
triangle, and square data, respectively. The insets show
selected segments of the data and the fits on expanded
scales, as indicated.

The data in Fig. 3(a) show the perfect periodic nature of
the recurrence. Because response is periodic, the definition
of the initial state is somewhat arbitrary. No matter which
initial state is chosen, however, one always sees multiple
recurrences to the initial state. As an example, if one takes
the pulse at 0 ns as an initial state, one observes three full
recurrence periods. Such an extended periodic response is
the signature of FPU recurrence. As above, the key to this
realization lies in the active feedback. It is believed that the
recurrences to the initial pulse are exact. Any small differ-
ences between the initial and the recurred pulses may be
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FIG. 3. Graph (a) shows the ring signal measured at a ring gain
of 0.6 dB. Graphs (b) and (c) show the tall and short soliton peak
times versus the number of round trips, respectively. The circles,
triangles, and squares are for the solitons before the first colli-
sion, after the first collision, and after the second collision,
respectively. The solid, dash, and dot lines show linear fits to
the circle, triangle, and square data, respectively.
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attributed to the fact that the collisions do not always occur
at the exact same positions, while the signals are always
recorded at one and the same position.

Figure 3 also shows a number of basic soliton features.
First, graph (a) demonstrates the ability of the solitons to
survive collisions. It is this collision-survival property that
allows for the repetitive collisions and the multiple recur-
rences observed in the first place. Second, graphs (b) and
(c) show that the collisions also produce phase shifts in the
peak time versus round trip number trajectories for a given
soliton. For the tall soliton in (b), a collision causes the
peak time to advance. For the short soliton in (c), in
contrast, a collision causes a delay. Without these phase
shifts, the recurrence period would be longer than that
shown in (a). One can also see that the trajectories in (b)
and (c) are perfectly straight. This demonstrates another
key feature of solitons, namely, that they travel with a
constant speed. In addition, one can see that all of the
fitting lines in the insets are parallel to each other. This
means that the solitons always recover their original speeds
after collision.

The above results demonstrate an exact and periodic
FPU recurrence. The results also provide direct experimen-
tal evidence for the ZK FPU recurrence interpretation in
terms of soliton dynamics. Recall that the ZK interpreta-
tion was specifically for the class of nonlinear systems
described by the KdV equation [3]. The YIG film based
nonlinear ring here, however, does not constitute a KdV
system. In this sense, the results also provide direct evi-
dence for the universality of the ZK interpretation for a
general nonlinear system. It is important to note that the
present recurrence is realized through the overtaking col-
lision of two solitons, while the recurrence dynamics in the
ZK model involves as many as eight solitons. In other
words, the present recurrence represents a simple but re-
vealing case of the ZK interpretation. The experimental
realization of the more aesthetic FPU recurrence that takes
place through multiple collisions between a large number
of solitons remains as a fascinating and challenging subject
in nonlinear science.

In line with the above, the present results demonstrate
that one can realize FPU recurrence in any practical
soliton-supporting systems as long as the dissipation is
compensated. This practical realization of FPU recurrence
may well lead to novel methods for secure communica-
tions, among other application. One could, for example,
(i) code information into the solitons, (ii) use a nonlinear
ring system [11,17,18] to combine these solitons into a
single pulse, (iii) transfer the combined pulse in a linear
communication channel, and then (iv) use a secondary but
identical nonlinear ring system to provide for the breakup
of the pulse into solitons. One could code an information
signal into the number and/or order of solitons. One could
also use the soliton modulation schemes proposed by
Suzuki et al. [19,20].

It is useful to note that the ZK interpretation is not the
only solution to the FPU recurrence paradox [21,22]. The

FPU paradox could also be interpreted, for example, in
terms of modulational instability (MI) [22,23]. Indeed, MI-
associated recurrence has also been experimentally ob-
served in deep water [24] and optical fibers [25].
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