Spin Triplet Superconducting State due to Broken Inversion Symmetry in Li₂Pt₃B M. Nishiyama, 1,* Y. Inada, 2 and Guo-qing Zheng 1,† ¹Department of Physics, Okayama University, Okayama 700-8530, Japan ²Department of Science Education, Faculty of Education, Okayama University, Okayama 700-8530, Japan (Received 26 July 2006; published 23 January 2007) We report ^{11}B and ^{195}Pt NMR measurements in noncentrosymmetric superconductor Li $_2\text{Pt}_3\text{B}$. We find that the spin susceptibility measured by the Knight shift remains unchanged across the superconducting transition temperature T_c . With decreasing temperature T_c below T_c , the spin-lattice relaxation rate $1/T_1$ decreases with no coherence peak and is in proportion to T^3 . These results indicate that the Cooper pair is in the spin-triplet state and that there exist line nodes in the superconducting gap function. They are in sharp contrast to those in the isostructural Li $_2\text{Pd}_3\text{B}$ which is a spin-singlet, s-wave superconductor, and are ascribed to the enhanced spin-orbit coupling due to the lack of spatial inversion symmetry. Our finding points to a new paradigm where exotic superconductivity arises in the absence of electron-electron correlations. DOI: 10.1103/PhysRevLett.98.047002 PACS numbers: 74.25.Bt, 74.25.Jb, 74.70.Dd In most superconducting materials, there is an inversion center in the crystal which guarantees the parity conservation. In conventional superconductors, such as Al, where the Cooper pair is formed by the attractive force produced by lattice vibration, the orbital wave function (OWF) of the Cooper pairs is in the s-wave form. Since an electron must obey the Fermi statistics, the two spins of such Cooper pair must be in the singlet state. This is also true in most strongly correlated electron systems such as high transition-temperature (T_c) copper oxides [1], cobalt oxide Na_rCoO₂ · 1.3H₂O [2], and many heavy-fermion compounds [3], where the OWF is also symmetric although it has nodes (zeros). In contrast, if the OWF is asymmetric about the origin with nodes, e.g., a p-wave function, the Cooper pair must be in the spin triplet state. Such a pairing state is realized in superfluid ³He [4] and also believed to occur in strongly correlated electron superconductors UPt₃ [5], Sr₂RuO₄ [6], and (TMTSF)₂PF₆ [7]. However, when a superconductor lacks a crystal inversion center, the above-described rule (parity conservation) is violated due to the asymmetric spin-orbit coupling (SOC), and the pairing symmetry becomes nontrivial [8–11]. In this Letter, we present NMR evidence that increasing the strength of the SOC drastically changes the electron pairing symmetry in noncentrosymmetric superconductors $\text{Li}_2\text{Pt}(\text{Pd})_3\text{B}$. The perovskitelike cubic compounds $\text{Li}_2\text{Pd}_3\text{B}$ and $\text{Li}_2\text{Pt}_3\text{B}$ are superconducting at $T_c \sim 7$ K and ~ 2.7 K, respectively [12,13]. The inversion-symmetry breaking effect is much larger compared with known compounds such as CePt_3Si (Ref. [14]); all the elements, including the heavy element Pt(Pd), are located in noncentrosymmetric positions, while in CePt_3Si the main effect comes from noncentrosymmetric Si which is a much lighter element. Also, in CePt_3Si or UIr (Ref. [15]), the correlated f electrons play a major role in determining the superconducting properties [16,17]; note that the $4f^0$ ana- log of the former compound, LaPt₃Si, is a conventional superconductor [18]. However, there are no electron correlations in Li₂Pd₃B [19,20], which turns out to be also true in Li₂Pt₃B (see below). Li₂Pd₃B is a spin singlet, s-wave superconductor as we reported previously [19]. In Li₂Pt₃B where the SOC is much stronger, Yuan et al. suggested very recently that their magnetic penetration depth data can be interpreted by an extended s-wave, spin-triplet model [21]. Here we present direct evidence from the measurement of spin susceptibility that the Cooper pair is in the spin triplet state in Li₂Pt₃B. We also find that there exist line nodes in the OWF. These findings point towards a new paradigm where exotic superconductivity arises without electron-electron correlations. Polycrystal samples of Li₂Pt₃B were prepared by the arc-melting method with starting materials of Li (99.9% purity), Pt (99.9%) and B (99.5%). The two-step arcmelting process [12] was used. For NMR measurements, the sample was crushed into powder. T_c at zero and a finite magnetic field (H) was determined by measuring the ac susceptibility using the in situ NMR coil. $T_c(H = 0)$ is 2.68 K. H_{c2} was estimated to be ~1.5 T, which is in agreement with the report by Badica et al. [13]. To minimize the reduction of T_c by H, the NMR measurements were done at very low fields of 0.26 T for ¹¹B and 0.39 T for ¹⁹⁵Pt. The NMR spectra were obtained by fast Fourier transform (FFT) of the spin echo taken at a constant H. The nuclear spin-lattice relaxation rate $1/T_1$ was measured by using a single saturation pulse and by fitting the nuclear magnetization to a single exponential function since the quadrupole interaction is absent; the fitting is excellent. Measurements below 1.4 K were carried out in a ³He-⁴He dilution refrigerator. Efforts were made to avoid possible heating by the rf pulse, such as using a small-amplitude and low-frequency (low *H*) rf pulse. A superconducting state can be described by a product of the OWF and the spin coordinate function (X_s) of a Cooper pair. The most direct probe for X_s is the spin susceptibility χ_s via the measurement of the Knight shift. If the Cooper pair is in the singlet state, χ_s will vanish at $T \ll T_c$. For triplet pairing, however, χ_s will remain unchanged across T_c . Figure 1 shows the NMR spectra, with those of Li₂Pd₃B for comparison. Figure 2 shows the low-T blowup of the measured ¹¹B Knight shift. The observed Knight shift (K_{obs}) is composed of the spin part (K_s) and the orbital part (K_{orb}) . K_{orb} is T independent, and K_s is proportional to χ_s , $K_s = A_{hf}\chi_s$, where A_{hf} is the hyperfine coupling between the nuclear and electron spins. We first recall the data for Li₂Pd₃B where the shift increases below T_c (H = 1.46 T) = 5.7 K [19], as can be seen in Fig. 2. This indicates the decrease of χ_s in the superconducting state, since A_{hf} due to p electrons of boron is negative [19]. Thus the spin pairing in Li₂Pd₃B is in the singlet state. The solid curve in Fig. 2 is a fit to the BCS theory, which yields $K_{\rm orb} = 0.085\%$ for ¹¹B. In contrast, the shift for $\text{Li}_2\text{Pt}_3\text{B}$ does not change across $T_c(H=0.26~\text{T})=2.1~\text{K}$ or T_c (H=0.35~T)=1.8~K. The dotted curve illustrates the behavior at H=0.26~T if the Cooper pair is in the spin-singlet state as in $\text{Li}_2\text{Pd}_3\text{B}$. As can be seen in Fig. 1 which shows the detailed evolution of the ¹¹B NMR spectra with temperature, the contrasting behavior in the two materials is evident. In $\text{Li}_2\text{Pd}_3\text{B}$, the spectrum moves toward high frequency progressively below T_c . However, in $\text{Li}_2\text{Pt}_3\text{B}$, the spectra at T=2.0~K (above T_c) and 0.1 K (below T_c) are almost overlapping FIG. 1 (color online). The temperature evolution of the 11 B NMR spectra. The horizontal axis (shift) is measured with respect to Larmor frequency (f_0). In the lower panel for Li₂Pt₃B, the dotted curve depicts the expected spectrum at T=100 mK if the Cooper pairing is in the singlet form (see text). with each other. The dotted curve depicts the expected spectrum at T=0.1 K assuming spin-singlet pairing (namely, $K_s=-0.013\%$ vanishes completely), which should be shifted by 0.63 kHz. It is obvious that such shift change is much larger than the experimental resolution as can be judged from the upper panel of Fig. 1 for Li₂Pd₃B, and should be detectable if it would occur. These results indicate that the Cooper pair is in a spintriplet state in Li₂Pt₃B, since the extrinsic cause for the contrasting behavior of the Knight shift can be excluded as elaborated below. First, one may worry about the influence of the vortices. However, H/H_{c2} is 0.17 in Li₂Pt₃B, which is much smaller than 0.32 in Li₂Pd₃B [13,19]. Therefore, the contribution from the normal electrons in the vortex cores, if any, is much smaller in Li₂Pt₃B. Also, note that the shift at H = 0.26 and 0.35 T, and also 0.39 T (see below) shows the same behavior. Second, one cannot ascribe the invariance of K_s to the spin-orbit scattering due to impurities. The full width at half maximum of the NMR spectra is about 3 G, which can be accounted for by dipole-dipole interaction alone, thus indicating that the sample is very clean. An estimate from the residual resistivity of 25 $\,\mu\Omega$ cm in our polycrystal reveals a conservative mean free path $l_{tr} \sim 500$ Å. On the other hand, if the impurity scattering is so strong as to give, say, 90% of the normal-state shift K^N , then the spin-orbit mean free path l_{SO} would be ~ 23 Å, as can be estimated from the formula $K^S/K^N = 1$ $2l_{\rm SO}/\pi\xi_0$ [22], by using the coherence length $\xi_0 =$ 145 Å. However, this is clearly inconsistent with the criterion of $l_{SO} \gg l_{tr}$ required for the above formula. Also, strong random scattering would destroy the nodes in the FIG. 2 (color online). The 11 B Knight shift at low temperatures for $\text{Li}_2\text{Pd}_3\text{B}$ and $\text{Li}_2\text{Pt}_3\text{B}$. The curves are calculated T dependence for spin-singlet pairing using the energy gap $\Delta_0 = 1.1k_BT_c$. K_{orb} due to the orbital susceptibility is estimated to be 0.085% (also see the main text). The arrows indicate T_c (H = 1.46 T) for $\text{Li}_2\text{Pd}_3\text{B}$ and T_c (H = 0.26 T) for $\text{Li}_2\text{Pt}_3\text{B}$, respectively. gap function, which is incompatible with our finding of clear nodes by T_1 measurement as described below. The insight into the Cooper pair's OWF can be gained from the $1/T_1$. As is reproduced in Fig. 3, $1/T_1$ in Li₂Pd₃B is enhanced just below T_c over its normal-state value, forming a so-called coherence peak [19], which is a hall-mark of an isotropic superconducting gap [23]. In contrast, $1/T_1$ shows no coherence peak below T_c in $\text{Li}_2\text{Pt}_3\text{B}$, and decreases as T^3 with decreasing temperature. This behavior indicates the existence of line nodes in the gap function, as has been seen in many heavy-fermion superconductors [24–26]. The $1/T_{1S}$ in the superconducting state is expressed as $$\frac{T_{1N}}{T_{1S}} = \frac{2}{k_B T} \iint \left(1 + \frac{\Delta^2}{EE'}\right) N_s(E) N_s(E') f(E) [1 - f(E')] \times \delta(E - E') dE dE', \tag{1}$$ where $1/T_{1N}$ is the relaxation rate in the normal state, $N_s(E)$ is the superconducting density of states (DOS), f(E) is the Fermi distribution function, and $C = 1 + \frac{\Delta^2}{EE'}$ is the coherence factor. When the gap function has nodes, its average over the Fermi surface is zero and one obtains C = 1. Also, the DOS at $E = \Delta$ is less divergent in such FIG. 3 (color online). Temperature dependence of the $^{11}\mathrm{B}$ spin-lattice relaxation rate, $1/T_1$, in $\mathrm{Li_2Pd_3B}$ and $\mathrm{Li_2Pt_3B}$. The experimental errors are within the circles. The arrows indicate the superconducting transition temperature T_c under magnetic fields. The curve is a fit to the BCS theory with $\Delta_0 = 1.1 k_B T_c$. The straight lines indicate the $1/T_1 \propto T$ and $1/T_1 \propto T^3$ relations, respectively. case. These two effects eliminate the coherence peak. Moreover, if the nodes form a line, the DOS at low energy is linear in E, which yields a T^3 dependence of $1/T_1$ according to Eq. (1). Therefore, the T_1 results show that the OWF of the Cooper pair has also changed drastically from Li₂Pd₃B to Li₂Pt₃B. Our conclusions are further supported by the ¹⁹⁵Pt NMR results. In Fig. 4 are shown the T dependence of $1/T_1$ and the Knight shift of ¹⁹⁵Pt under a magnetic field of H = 0.396 T. $1/T_1$ shows a T^3 variation below T_c , as in the ¹¹B nuclear site. The Knight shift has a much larger value as expected for a transition metal element, and is invariant across T_c . The recent measurement of magnetic penetration depth that shows T-linear variation in Li₂Pt₃B is consistent with our results [21]. A spin-triplet state with anisotropic OWF is realized in superfluid ³He [4] and also believed to occur in super- FIG. 4. The T dependence of $1/T_1$ and the Knight shift for ^{195}Pt in $\text{Li}_2\text{Pt}_3\text{B}$. conductors UPt₃ [5], Sr₂RuO₄ [6], and (TMTSF)₂PF₆ [7]. In these cases, the existence of nodes in the gap function is a manifestation of strong electron correlations (Coulomb repulsion). However, the unconventional nature of the superconducting state of Li₂Pt₃B cannot be attributed to electron correlations. In fact, the electron correlation is as weak as in Li₂Pd₃B, as can be judged from the conservation of Korringa law, namely, $1/T_1T$, and K_s are T independent in the normal state (see Figs. 2 and 3). Instead, the striking difference in the pairing symmetry between Li₂Pd₃B and Li₂Pt₃B should be attributed to the difference in the SOC strength. The SOC is described by the Hamiltonian, $H_{SO} =$ $\frac{\hbar^2}{4m^2c^2}[\vec{\nabla}V(r)\times\vec{k}]\vec{\sigma}$, where \vec{k} and $\vec{\sigma}$ are the electron momentum and Pauli spin operator, respectively, and $\vec{\nabla}V(r)$ is the electrical field. The broken inversion symmetry increases $\nabla V(r)$. The magnitude of the SOC depends on the number of positive charges (Z) that comprise the nucleus. As a good approximation, it goes in proportion to Z^2 , which is about 3 times larger for Pt than Pd. The SOC lifts the twofold spin degeneracy of the electron bands, violating the parity conservation. As a result, the spin-singlet and spin-triplet states are mixed [8–11]. The extent to which the triplet-state component is mixed depends on the strength of SOC [8-11]. Our results show that Li₂Pt₃B is an extreme case in which the strong SOC makes the triplet state dominant. They explain some puzzles such as the lower T_c in $\text{Li}_2\text{Pt}_3\text{B}$ in spite of higher DOS than Li₂Pd₃B (Ref. [27]); generally a spin triplet state results in a lower T_c for a system with otherwise same parameters [28]. Finally, we note that a determination of the node positions in the gap function is an important issue to be settled in future works. A p-wave model $\Delta(\theta) = \Delta_0 \cos(\theta)$, with horizontal line nodes, will fit perfectly our $1/T_1$ data: a fitting parameter of $\Delta_0 \sim 2.5 k_B T_c$ gives a T^3 -dependent $1/T_1$ in the whole temperature range below T_c for such model [26]. On the other hand, the model proposed by Yuan $et\ al.$ [21] may also be able to explain the T^3 variation of $1/T_1$, but seems difficult to account for the lack of the coherence peak found here, since the momentum (k)-dependent term $\frac{\Delta(k)\Delta(k')}{E(k)E(k')}$ in the coherence factor will not cancel in such model where $\Delta(k)$ does not change sign over the Fermi surface [29]. We hope that our results will stimulate more theoretical works in this regard. In conclusion, through extensive NMR measurements, we have found that in noncentrosymmetric $\text{Li}_2\text{Pt}_3\text{B}$ the Cooper pair is in the spin-triplet state and there exist line nodes in the gap function. The realization of such exotic superconducting state is surprising, given that there are no electron correlations in the material. The striking difference from the isostructural $\text{Li}_2\text{Pd}_3\text{B}$, which is a conventional superconductor, arises from the much larger spin-orbit coupling in $\text{Li}_2\text{Pt}_3\text{B}$. Our finding shows that $\text{Li}_2\text{Pt}_3\text{B}$ is a spin-triplet superconductor with the highest T_c to date which will provide better opportunities for studying novel superconductivity. We emphasize that noncentrosymmetric superconductors are still rare, and Li₂(Pd, Pt)₃B is an ideal prototypical system for studying the effects of crystal inversion-symmetry breaking. The authors wish to thank S. Fujimoto, N. Hayashi, and S. C. Zhang for helpful discussions, and M. Sata for assistance in sample growing which was performed by using facilities in ISSP, University of Tokyo. This work was partly supported by a MEXT research grant (No. 17072005). - *Present address: Department of Physics and Electronics, Osaka Prefecture University, Osaka 599-8531, Japan. †To whom all correspondence should be addressed. - [1] C.C. Tsuei and J.R. Kirtley, Rev. Mod. Phys. **72**, 969 (2000). - [2] G.-q. Zheng et al., Phys. Rev. B 73, 180503(R) (2006); G.-q. Zheng et al., J. Phys. Condens. Matter 18, L63 (2006); T. Fujimoto et al., Phys. Rev. Lett. 92, 047004 (2004). - [3] R.H. Heffner and M.R. Norman, Comments Condens. Matter Phys. 17, 361 (1996). - [4] D. M. Lee, Rev. Mod. Phys. 69, 645 (1997). - [5] H. Tou et al., Phys. Rev. Lett. 77, 1374 (1996). - [6] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003). - [7] I. J. Lee et al., Phys. Rev. Lett. 88, 017004 (2001). - [8] L. P. Gorkov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001). - [9] P. A. Frigeri et al., Phys. Rev. Lett. 92, 097001 (2004). - [10] K. V. Samokhin, Phys. Rev. Lett. 94, 027004 (2005). - [11] P. A. Frigeri, D. F. Agterberg, and M. Sigrist, New J. Phys.6, 115 (2004). - [12] K. Togano et al., Phys. Rev. Lett. 93, 247004 (2004). - [13] T. Badica, et al., J. Phys. Soc. Jpn. 74, 1014 (2005). - [14] E. Bauer et al., Phys. Rev. Lett. 92, 027003 (2004). - [15] T. Akazawa *et al.*, J. Phys. Condens. Matter **16**, L29 (2004). - [16] M. Yogi et al., Phys. Rev. Lett. 93, 027003 (2004). - [17] S. Fujimoto, J. Phys. Soc. Jpn. 75, 083704 (2006). - [18] T. Takeuchi and Y. Onuki *et al.*, J. Phys. Soc. Jpn. (to be published). - [19] M. Nishiyama, Y. Inada, and G.-q. Zheng, Phys. Rev. B **71**, 220505(R) (2005). - [20] T. Yokoya et al., Phys. Rev. B 71, 092507 (2005). - [21] H. Q. Yuan et al., Phys. Rev. Lett. 97, 017006 (2006). - [22] P. W. Anderson, Phys. Rev. Lett. 3, 325 (1959). - [23] L.C. Hebel and C.P. Slichter, Phys. Rev. 113, 1504 (1959). - [24] D. E. Maclaughlin et al., Phys. Rev. Lett. 53, 1833 (1984). - [25] Y. Kitaoka et al., J. Magn. Magn. Mater. 52, 341 (1985). - [26] G.-q. Zheng et al., Phys. Rev. Lett. 86, 4664 (2001). - [27] K.-W. Lee and W. E. Pickett, Phys. Rev. B 72, 174505 (2005). - [28] P. Monthoux and G.G. Lonzarich, Phys. Rev. B 63, 054529 (2001). - [29] N. Hayashi et al., Phys. Rev. B 73, 092508 (2006).