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We study the transitions from band insulator to metal to Mott insulator in the ionic Hubbard model on a
two-dimensional square lattice using determinant quantum Monte Carlo. Evaluation of the temperature
dependence of the conductivity demonstrates that the metallic region extends for a finite range of
interaction values. The Mott phase at strong coupling is accompanied by antiferromagnetic order.
Inclusion of these intersite correlations changes the phase diagram qualitatively compared to dynamical

mean field theory.
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Introduction. —Interaction effects in tight-binding mod-
els such as the Hubbard Hamiltonian have been widely
studied, and understood, for their ability to drive transitions
to magnetically ordered states and insulating behavior.
There has been considerable interest, but no clear consen-
sus, concerning the possibility of a converse phenomenon,
namely, that correlations can cause metallic behavior. The
insulating starting point in most such studies has been a
phase in which the electrons are localized by disorder [1].
However, a simpler context in which to study interaction-
driven insulator-to-metal transitions is to begin with a band
insulating (BI) state, in which the insulating behavior is
caused by a periodic external potential as opposed to a
random one [2,3]. Such transitions have been conjectured
to explain the enhanced response of quasi-one-dimensional
correlated electron systems such as ferroelectric perov-
skites [4] and organic materials [5], and studied theoreti-
cally there [6], as well as nonlinear electronic polariza-
bility in transition metal oxides [7].

Recently, this issue has been addressed in higher dimen-
sion within dynamical mean field theory (DMFT) and a
number of interesting conclusions emerged [8]. However,
because DMFT treats only a single site (retaining, how-
ever, all the dynamical fluctuations of the self-energy
which is ignored in conventional, static mean field theory),
it is important to undertake complementary work which is
able to retain intersite fluctuations.

In this Letter, we investigate such Bl-metal transitions
with determinant quantum Monte Carlo (DQMC). We
study the “ionic Hubbard model’’:
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where chg (¢;,) are the usual fermion creation (destruction)
operators for spin ¢ on site /, and n;, = c;rgcl(, is the
number operator. #, w, and U are the electron hopping,
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chemical potential, and on-site interaction strength, respec-
tively. The kinetic energy sum is over near neighbor sites
(Ijy on a two-dimensional square lattice. A(—1)! is a
staggered site energy. In the noninteracting limit, U = 0,
the effect of A is to produce a dispersion relation, E(k) =

*ye(k)* + A? with e(k) = —2t[cosk, + cosk,], which is
gapped at half-filling. A considerable amount is known
concerning this model in one dimension [6], but the exis-
tence of an interaction-driven metallic phase at half-filling
is still unresolved even in d = 1.

In this Letter we will use DQMC to study the role of
interactions in driving a BIl-metal transition in the model
described by Eq. (1).

Computational methods.—DQMC [9] provides an exact
numerical approach to study tight-binding Hamiltonians
like the Hubbard model. The partition function Z is first
expressed as a path integral by discretizing the inverse
temperature . The on-site interaction is then replaced
by a sum over a discrete Hubbard-Stratonovich field [10].
The resulting quadratic form in the fermion operators can
be integrated analytically leaving an expression for Z in
terms of a sum over all configurations of the Hubbard-
Stratonovich field with a summand (Boltzmann weight)
which is the product of the determinants of two matrices
(one for spin-up and one for spin-down). The sum is
sampled stochastically using the Metropolis algorithm.
The results capture correlations in the Hubbard Hamilton-
ian exactly since the systematic ““Trotter errors’ associated
with the discretization of the inverse temperature can easily
be extrapolated to zero. Results must also be extrapolated
to the thermodynamic limit, as we shall discuss [11].

Equal time operators such as the density and energy are
measured by accumulating appropriate elements, and prod-
ucts of elements, of the inverse of the matrix whose deter-
minant gives the Boltzmann weight. We will show results
for the spin structure factor,

Sk) = Zeik'l«njm —nj)(ng —ny)),
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which probes magnetic order. For the conductivity, o 4., we
employ an approximate procedure [12] which allows o,
to be computed from the wave vector q- and imaginary
time 7-dependent current-current correlation function
A, (q, 7) without the necessity of performing an analytic
continuation [13],

,82
—
Here 18 = l/T’ Axx(q’ T) = <.]x(q’ T)jx(_q’ 0))9 and

j.(q, 7) the (q, 7)-dependent current in the x direction, is
the Fourier transform of,
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This approach has been extensively tested and used for the
superconducting-insulator transition in the attractive
Hubbard model [12], as well as for metal-insulator tran-
sitions in the repulsive model [14].

Results.—We begin by showing the temperature depen-
dence of the conductivity o, for increasing values of the
interaction strength for A = 0.5. In Fig. 1 we see that the
insulating behavior at U = 0 and U = 0.2¢, signaled by
dog./dT >0 at low T, is changed to metallic doy./dT <
0 at low T when U = 1. A further increase of the correla-
tions to U = 2 weakens the metallic behavior, which is
finally destroyed completely in a transition to a Mott
insulator (MI) at U = 4. When the band gap is larger (A =
1), the screening of the one-body potential is not suffi-
ciently strong for U = 1 to cause metallic behavior, as is
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FIG. 1 (color online). The transitions, at half-filling, from a
band insulator to metal to MI with increasing U are shown for
periodic potential strength A = 0.5. At U = 0 and U = 0.2¢ the
conductivity . goes to zero as T is lowered. However, for U =
1¢, 2t the system is metallic. Mott insulating behavior sets in for
U = 4t. The lattice size is 6 X 6. When A = 1.0, the band gap
increases and U = 1t is no longer sufficiently large to screen the
one-body potential and drive the system metallic.

shown by the corresponding data set in Fig. 1. Unless
otherwise mentioned, the lattice size used in the simula-
tions is N = 6 X 6 and the filling is p = 1.0 (half-filling).

In the single-site (+ = 0) limit, the ionic Hubbard model
is a band insulator for U < 2A and a MI for U > 2A. That
is, at weak coupling and half-filling, the sites with lower
energy —A are doubly occupied and those with higher
energy +A are empty, with a gap to further addition of
particles set by 2A — U. At strong coupling, both types of
sites are singly occupied, with a “Mott” gap to further
addition of particles set by U — 2A. At the single special
value U = 2A correlations close the gaps [3,8]. Figure 2,
which presents results for o4, for A = 0.5, shows that
when ¢ is nonzero, this single metallic point is expanded
to a finite range of U values. For U < U, = 0.4t the
conductivity curves for lower temperature lie below those
of higher temperature. The same is true for U > U, =
2.4t. In other words, for these interaction strengths, the
conductivity is falling as the temperature decreases and,
presumably, as T is lowered to zero the conductivity will
vanish. Between U,; and U, the conductivity rises as 7 is
decreased, so that the crossings of the curves signal the
transition from BI to metal to MI. Interestingly, however,
the largest conductivity remains near U = 2A = 1 as one
might expect from the # = 0 analysis.

The use of DQMC to study the ionic Hubbard model
allows us to examine the behavior of intersite correlations,
such as the spin-spin correlations and their Fourier tran-
form S(k). Figure 3 shows results for the antiferromagnetic
(AF) structure factor S(77, ) as a function of U for B =
10, 12, 16. Comparing with Fig. 2 we see that the band
insulating and metallic phases are paramagnetic, but that
the transition to MI behavior is accompanied by the onset
of AF order.
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FIG. 2 (color online). The conductivity o at half-filling for
A = 0.5 is shown as a function of U for three different low
temperatures, B = 10, 12, 16. The band-insulator to metal
transition is signaled by the crossing of the curves at U, =
0.4t. At U, = 2.4¢ the three curves cross again, indicating the
MI transition.
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FIG. 3 (color online). The AF structure factor is shown at half-
filling as a function of U for A = 0.5 and B = 10, 12, 16.

One way in which the inclusion of such intersite corre-
lations changes the physics in a fundamental way is when
the periodic potential is absent, that is, at A = 0. Although
single-site DMFT can capture AF transitions, when it is
restricted to the paramagnetic phase, single-site DMFT
concludes the Hubbard model is a metal at weak coupling
[15,16]. Indeed, this metallic behavior at A = 0 is what is
reported in the single-site DMFT treatment of the phase
diagram of the ionic Hubbard model [8]. However, it is
well known that the d =2 half-filled square lattice
Hubbard model, Eq. (1), is an AF insulator at all U, even
weak coupling. Figure 4 presents our results for the con-
ductivity which confirm this. At all U values shown, oy
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FIG. 4 (color online). The conductivity o4 is shown as a
function of temperature at half-filling. When the periodic poten-
tial, and hence the noninteracting band gap, is absent (A = 0.0)
the square lattice Hubbard model is insulating for all U, due to
nesting of the Fermi surface. We redisplay data for A = 0.5,
U =1 from Fig. 1 to emphasize the contrast between the
metallic behavior there and the insulating behavior for all U
when A = 0.

ultimately decreases as T is lowered. Indeed, we have
verified that the value of 7, where o4 has its maximum,
correlates well with the temperature T, at which AF cor-
relations begin to rise rapidly. This temperature, like the
Neél temperature in the d = 3 Hubbard model, is a non-
monotonic function of U, falling to small values both at
weak and strong coupling. While the insulating nature of
the square lattice Hubbard model at weak coupling has
been previously shown from QMC studies of the spectral
function and spin correlations, this is the first QMC dem-
onstration of the insulator based on a calculation of oe.

It is interesting to note that while all the A = 0 curves
have a positive low temperature slope, dog./dT >0, a
distinction between the origins of insulating behavior in
the weak and strong coupling regions is clearly evident. At
small U, where the ‘““Slater”” gap originates due to AF
correlations, o attains a large value before turning over
as T is lowered. When U is bigger, so that a “Mott” gap
separating upper and lower Hubbard bands begins to
emerge, 0. is much reduced.

While DQMC allows us to look at intersite correlations
and concomitant phenomena like antiferromagnetism, the
method employs lattices of finite size, unlike DMFT which
directly probes the thermodynamic limit. Thus, it is im-
portant to verify that the metallic phase we observe persists
on larger lattices. In Fig. 5 we show results for oy, as a
function of temperature in the metallic phase for lattices up
to 12 X 12. The rise in oy, with decreasing T is seen to
occur for all the lattices studied. We comment that it is not
surprising that we find the lattice size has a rather sub-
stantial influence on the conductivity for these parameters,
since it is known that such finite size effects are larger at
weak coupling.

Conclusions.—We have presented determinant quantum
Monte Carlo studies of the two-dimensional ionic Hubbard
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FIG. 5 (color online). The conductivity at half-filling is shown
for different lattice sizes for U = 1, close to the point where the
system is most metallic for periodic potential A = 0.5. (See
Fig. 2). Although o4, decreases with increasing lattice sizes, the
signature of metallic behavior (doy./dT < 0) is unchanged.
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FIG. 6 (color online). The phase diagram of the ionic Hubbard
model. Symbols are the result of our QMC simulations. The
dashed line is the strong coupling (¢ = 0) phase boundary
between band-insulator and Mott insulator.

Hamiltonian which demonstrate that interactions can drive
a band-insulator metallic. This work complements DMFT
studies by including intersite AF correlations which quali-
tatively alter the ground state phase diagram.

We have focused most of our results on A =0.5.
However, we have also performed simulations sweeping
UatA = 0.25and A = 1.00. The emerging phase diagram
is shown in Fig. 6. There are several key differences with
that obtained with single-site DMFT [8]. First, as we have
emphasized, the behavior along the A = 0 axis is signifi-
cantly altered. Contrary to DMFT, the inclusion of intersite
magnetic fluctuations yields an AF insulating phase for all
U. This difference, while important, is however expected
since single-site DMFT is unable to capture order which
requires multiple sites. Indeed, a recent preprint [17] re-
ports results for the ionic Hubbard model using cluster
DMFT to incorporate intersite correlations. When DMFT
is extended in this way, the resulting phase diagram
matches ours qualitatively and quantitatively very well:
these authors also find a Mott phase along the entire A =
0 axis of the phase diagram. Our results and cluster DMFT
both find the intermediate phase is centered roughly around
the strong coupling boundary line U = 2A (dashed line in
Fig. 6), and have similar extent.

There is still an important open issue concerning the
precise nature of the intermediate phase. Our results sug-
gest, in agreement with single-site DMFT [8], that this
phase is metallic, while Kancharla et al. suggest a bond
ordered phase. Nevertheless, all three approaches agree on

the vanishing of the gap in the phase located between the
band and Mott insulators.
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