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The exponential localization of Wannier functions in two or three dimensions is proven for all insulators
that display time-reversal symmetry, settling a long-standing conjecture. Our proof relies on the
equivalence between the existence of analytic quasi-Bloch functions and the nullity of the Chern numbers
(or of the Hall current) for the system under consideration. The same equivalence implies that Chern
insulators cannot display exponentially localized Wannier functions. An explicit condition for the reality
of the Wannier functions is identified.
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Wannier functions play a fundamental role in the de-
scription of the electronic properties of solids [1]. They
allow for an intuitive interpretation of the bonding prop-
erties of solids [2], they are at the center of the modern
theory of polarization [3], and they form a very efficient
basis for order-N calculations or the construction of model
Hamiltonians [4].

For one-dimensional systems, Kohn [5] proved that
Wannier functions are exponentially localized. This prop-
erty has many desirable consequences, such as the exis-
tence of moments hrni for all n, the exponential con-
vergence of numerical calculations [6], and the possibility
to use Wannier functions for the description of surfaces [7].
In two and three dimensions, the existence of exponentially
localized Wannier functions is one of the few unsolved
problems of one-particle condensed-matter physics [8]. In
the absence of a proof for exponential decay, this property
is commonly used as a working hypothesis [9], checked
with numerical calculations [10], or simply taken for
granted [11,12].

In this Letter, we demonstrate that exponentially local-
ized Wannier functions exist for insulators in two and three
dimensions and show how localization is related to the
Berry connection for the set of bands under consideration
[2] and to the corresponding Chern number(s). Chern
numbers have been playing a rapidly increasing role in
solid-state physics, from metal-insulator transitions [13] to
quantized transport [14], transition metal nanomagnets
[15], the quantum Hall effect [16], and its spin analogue
[17]. Our central result is that Wannier functions with
exponential decay can be constructed if and only if all of
the Chern numbers are zero. This implies that if the system
is symmetric for time reversal, then the Wannier functions
are exponentially localized.

We consider a crystal with a Bravais lattice � and a unit
cell C. The reciprocal lattice is denoted by �� and the
reciprocal unit cell by �. A function f�r� is called periodic

if f�r�R� � f�r� for any vector R of �, while a function
f�k� is called periodic in the reciprocal space if f�k�
G� � f�k� for any vector G of ��. The dynamics of the
electrons in the crystal is described by a Hamiltonian H �
��� V�r� (in Ry), where the potential V is real and
periodic. According to Bloch’s theorem, the eigenfunc-
tions of H can be written as  nk�r� � eik�runk�r�, where
the Bloch states unk�r� are periodic eigenstates of the
Hamiltonian H�k� � ��ir� k�2 � V�r� with energy
�n�k� and satisfy the boundary conditions

 unk�G�r� � e�iG�runk�r�: (1)

Wannier functions are defined as

 wn�r�R� �
1

j�j

Z
�
dkeik��r�R�unk�r�; (2)

where j�j is the volume of �. The localization properties
of the Wannier functions are related to the regularity of unk
as a function of k. In a nutshell, the more regular the states,
the more localized the Wannier functions [5,18,19].
Exponential decay is obtained if and only if the functions
are analytic [18,20].

In the simplest procedure, the energies �n�k� and the
Bloch functions unk are determined as a function of k by
ordering the eigenvalues by increasing energies �1�k� �
�2�k� � . . . . Although this procedure is standard in band-
structure calculations, it gives Bloch states unk that are not
regular in k since the phase of unk is random. Moreover, at
a crossing point the energy �n�k� can have a kink. In one
dimension, Kohn [5] showed that it is possible to define
Bloch states that are analytic functions of k. In two and
three dimensions, this is generally not possible [18] be-
cause band crossings lead to Wannier functions that can
decay as 1=R4 [21].

Blount [22] noticed that the decay properties of Wannier
functions can be improved by considering a set of eigen-
states, called a composite band [23], which are separated
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by a gap from all others. More precisely, if
�1�k�; . . . ; �M�k� are the eigenstates of the composite
band, we assume that there is an a > 0 such that j�n�k� �
�m�k�j> a for any k in �, 1 � n � M, and m>M. In
insulators, it is always possible to define a composite band
since gaps exist between valence and conduction bands and
between valence bands and core states. This is not neces-
sarily the case in metals. An example of a composite band
is given in Fig. 1 for silicon. Exponentially localized
Wannier functions are obtained if we can find M analytic
functions vnk (called quasi-Bloch states) that span the
same vector space as the M Bloch states of the composite
band. The problem of the existence of analytic quasi-Bloch
states was solved for a single isolated band (i.e., M � 1) in
3D by des Cloiseaux [18] and Nenciu [8]. In this work, we
determine when analytic quasi-Bloch functions exist for
any composite band in two and three dimensions.

The quasi-Bloch functions vnk can be expressed as
vnk �

P
mumk�r�Umn�k�, where U�k� is a unitary matrix,

defining the Wannier functions

 wn�r� �
1

j�j

Z
�
dkeik�r

X
m

umk�r�Umn�k�: (3)

The improved localization of these Wannier functions was
observed on many systems [2,24].

To study the analytic properties of the Bloch functions,
we consider a complex number k � k0 � ik00. Then H�k�
is not Hermitian, but there still are eigenvalues �n�k� and
eigenstates unk such that H�k�unk � �n�k�unk. The
branch points of �n�k� determine the points of nonanaly-
ticity of the function unk [5,22]. Even very simple crystals,
such as silicon, exhibit such branch points [25].

If the potential V�r� is square integrable, it can be shown
that H�k� is analytic [26]. The reality of V�r� implies that
Hy�k� � H�k�� and H��k� � H��k��. From a practical
point of view, the condition of square integrability of V�r�
encompasses potentials with Coulomb singularities and the

potentials used in local-density approximation and gener-
alized gradient approximation calculations. The calcula-
tion of band structures in the complex plane is available in
some standard band-structure packages [27].

Several authors [8,18,28] noted that the obstacles to the
existence of quasi-Bloch states are topological. To illus-
trate this, we introduce a simple mathematical concept, that
of a fiber. It is quite common in physics to consider a space
(let us call it the base) and to associate a vector space
(called the fiber) to each point of the base. For example, in
magnetostatics, the base B is the space R3, and to each
point r of the base we associate a three-dimensional vector
space [the fiber F�r� � R3]. The vector potential A�r� is a
vector of the space F�r�. In the Born-Oppenheimer ap-
proximation, the base B is the set of possible positions of
the nuclei R1; . . . ;RN, and the fiber F�R1; . . . ;RN� corre-
sponding to a nuclear configuration is the vector space
generated by the solutions of the Schrödinger equation
with clamped nuclei. For a composite band, the base is
the Brillouin zone �, and the fiber F�k� is the
M-dimensional vector space generated by the Bloch states
unk. The quasi-Bloch states vnk can now be defined pre-
cisely as a basis of F�k� such that each vnk is analytic in k,
periodic in the reciprocal space, and satisfies the boundary
conditions (1).

To show that topology might forbid the existence of
quasi-Bloch states, we consider the simple example where
the base B is a circle represented by the angular variable
x 2 	0; 2�
 and the fiber is F�x� � R. We denote by v�x� a
basis of F�x�. Topology intervenes when we determine
how the fiber at x � 0 is related to the fiber at x � 2�:
We can use periodic boundary conditions v�2�� � v�0�
(cylinder) or antiperiodic boundary conditions v�2�� �
�v�0� (Möbius strip, illustrated in Fig. 2). In the case of
a cylinder, we can choose a basis v�x� � e (a nonzero
vector independent of x). This basis is obviously regular
and periodic in x. In the case of a Möbius strip, let us
assume that a regular and antiperiodic basis v�x� of F�x�
exists. Let y�x� be the component of v�x�with respect to the
periodic basis e, namely, v�x� � y�x�e. Clearly, y�x� has to
be regular and antiperiodic [y�0� � �y�2��]. By the inter-
mediate value theorem, there needs to be a point x0 be-
tween 0 and 2� such that y�x0� � 0, as shown in Fig. 2.
Thus, at x0, v�x0� � 0. But the null vector cannot be a basis
for F�x0�. Therefore, the topology of the Möbius strip
implies that no regular basis of F�x� can exist.

The topological obstruction to the existence of quasi-
Bloch states in dimensions one, two, and three has been
recently studied [29]. It was discovered that quasi-Bloch
states exist if and only if all of the Chern numbers of the
system are zero. Such a result is of central importance to
our Letter, since it shifts the focus of our analysis on the
determinations of the nullity of Chern numbers in dimen-
sions two and three.

For a given k, P�k� �
PM
n�1 junkihunk� j defines a pro-

jector [22]. The Riesz formula for the projector is
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FIG. 1. Band structure of silicon. The contour � encloses the
energies of the composite band.
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 P�k� �
1

2�i

Z
�

dz
z�H�k�

;

where � is a contour enclosing all of the eigenvalues �nk of
the composite band (see Fig. 1). P�k� is analytic in k on a
strip �C � fk � k0 � ik00;k0 2 �; jk00j j< A; j � 1; 2; 3g,
with A> 0 even if the states unk are not analytic in k [18].
The value of A is related to the band gap [30]. An example
of the contour � for Si is given in Fig. 1.

To calculate the Chern numbers, we introduce the Berry
connection corresponding to the basis unk of F�k�, defined
in dimension d as the d-dimensional vector of matrix func-
tions A�k� � �A1�k�; . . . ; Ad�k�� with matrix elements

 A mn�k� �
Z
C
u�mk�r�rkunk�r�dr:

The trace of the curvature of this connection is [2,29]

 Bij�k� � tr
�
@Aj

@ki
�
@Ai

@kj
� 	Ai; Aj


�

� Tr
�
P�k�

�
@P�k�
@ki

;
@P�k�
@kj

��
; (4)

where tr is the matrix trace and Tr the operator trace.
In two dimensions, this curvature leads to the unique

Chern number

 C1 �
i

2�

Z
�
B12�k�dk1dk2: (5)

In three dimensions, we have three Chern-like numbers

 C‘ �
i

2�

X
i<j

Z
�‘

Bij�k�dki ^ dkj; (6)

where ‘ � 1; 2; 3. The domain of integration �‘ is a torus

defined as the set of points �k1; k2; k3� of � such that k‘ �
0. The reality of V�r� implies the time-reversal symmetry
P�k� � 	P��k�
�. Therefore, Bij��k� � �Bij�k�, the
Chern numbers are zero, and quasi-Bloch functions exist.

With this result in hand, we can repeat the reasoning of
des Cloiseaux (Sec. III.B of Ref. [18]) to show that
limjRj!1e

bjRjwn�r�R� � 0 for any b < A.
Our proof was given for the case of ‘‘spinless’’ electrons.

To take spin, spin-orbit, and all relativistic corrections into
account, we consider a crystal described by the Dirac
Hamiltonian [31] H�k� � �ic� � �r� ik� � �c2=2�
V�r�. The Bloch functions are Dirac spinors u�nk�r�, and
the corresponding Berry connection is

 A��mn�k� �
Z
dr	u�mk�r�


�rku
�
nk�r�:

The curvature is defined by Eq. (4), where the trace is over
the n and � indices, and the Chern numbers by Eqs. (5) and
(6). Again, quasi-Bloch functions exist for the Dirac
Hamiltonian if and only if all Chern numbers are zero
[29] (in particular, if the potential V is square integrable
and time-reversal symmetric). In that case, the relativistic
Wannier functions are exponentially localized.

Given the existence of exponentially decaying Wannier
functions vnk, we need an algorithm to determine
the unitary matrix U�k� such that vnk�r� �P
mUmn�k�umk�r�. We sketch now a possible approach.

Being analytic, the quasi-Bloch functions satisfy the
Cauchy-Riemann equation �@vnk � 0, where �@ �
� �@x; �@y; �@z� and, if k � k0 � ik00, �@j � �1=2��@k0j � i@k00j �.

If we denote by u�k� and v�k� the vectors with components
unk and vnk, the Cauchy-Riemann equation gives us �@v �
� �@u�U� u� �@U� � 0. Multiplying by the conjugate of u,
we find �@U � XU, where Xmn�k� � �hu�m�kj �@unki. Note
that, in regions where unk is analytic, Xmn�k� � 0. The
equation �@U � XU should be solved in the space of ma-
trices U�k� periodic in the reciprocal space such that
U�k�y � U�k���1. This condition ensures the orthogonal-
ity of the quasi-Bloch functions on the real axis. Explicit
integral expressions are available to solve the Cauchy-
Riemann equation �@f � g [32]. They turn �@U � XU
into an integral equation that can be solved numerically.

Note that, if U is a particular solution of �@U � XU, the
general solution can be written as UA, where A is any
analytic matrix periodic in the reciprocal space and satis-
fying A�k�y � A�k���1. For instance, A�k� can be any
matrix of the form A�k� � exp�

P
RaRe

ik�R�, where the
sum is over a finite number of sites of � and the matrices
aR satisfy ayR � �a�R. This very large set of solutions
corresponds to the fact that exponential decay is a long-
range property: Any finite linear combination of exponen-
tially decaying Wannier functions centered on various sites
is still exponentially decaying. Therefore, it is still neces-
sary to optimize localization around the centers of the
Wannier functions [2] by properly choosing A�k�. Such

 

FIG. 2. Möbius strip. The solid circle is the base B, and the
thin straight lines are the fibers F�x�. The dashed line represents
the constant but not antiperiodic basis e. The arrows represent
the continuous and antiperiodic basis vectors v�x�. It is clear that
v�x� has to be zero for some x.
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an approach provides Wannier functions that are localized
on the short and the long range.

It is convenient to determine under which condition the
Wannier functions are real. In Eq. (3), we take the complex
conjugate and change the variable k! �k

 w�n�r� �
1

j�j

X
m

Z
�
dkeik�ru�m�k�r�	Umn��k�
�:

The reality of V�r� implies that we can choose u�m�k�r� �
umk�r�. Thus, the Wannier functions are real if
	Umn��k�
� � Umn�k� for real k. This property is satis-
fied if U satisfies U��k�� � U�k�� for complex k.

Wannier functions are often obtained by minimizing a
functional ��U� [2]. The time-reversal symmetry I acts as
�IU�mn�k� � 	Umn��k�
� for real k. If the functional �
satisfies the symmetry ��IU� � ��U� and if � has a
unique minimum (up to a possible overall phase), then
U � IU and the Wannier functions are real. The spread
functional � defined by Marzari and Vanderbilt [2] sat-
isfies the symmetry ��IU� � ��U�. Thus, when the
spread functional has a unique minimum U, the corre-
sponding Wannier functions are real, proving for this
case the conjecture of Ref. [2].

In this Letter, we assumed that the system is time-
reversal symmetric. If this is not the case (e.g., for the
Haldane Hamiltonian [33]), the present approach implies
that exponentially localized Wannier functions exist in
regions of the parameter space where the Chern numbers
are zero or, equivalently, when the Hall current is zero.
Thus, the vanishing of the Hall current is a measure of the
exponential localization of the Wannier functions. This
confirms rigorously Thouless’ observation [34]. As a cor-
ollary, we deduce that no exponentially localized Wannier
functions exist for Chern insulators (i.e., insulators with
nonzero Chern numbers [35]) and that time-reversal sym-
metric systems cannot be Chern insulators (as noticed by
Haldane [33] for the case M � 1).

In conclusion, in this work we demonstrated that
Wannier functions are exponentially localized for insula-
tors that satisfy time-reversal symmetry, and we showed
that the vanishing of the Chern numbers is equivalent to the
exponential localization of the Wannier functions. As a
corollary, Wannier functions in Chern insulators are not
exponentially localized. Moreover, we presented a simple
criterion to determine when Wannier functions can be
chosen as real.

Electron localization is the key of several physical con-
cepts such as electric polarization [36], piezoelectricity,
orbital magnetization [37], and the nature of the insulating
state [1,9]. Our condition for the occurrence of localization
(the vanishing of Chern numbers) is consequently a fun-
damental result for all of these subjects.

We thank K. K. Uhlenbeck, M. Putinar, R. Zentner, D. S.
Freed, F. Mauri, and D. Ceresoli for useful comments and
IDRIS (project No. 061202) for computer time.

[1] W. Kohn, Phys. Rev. 133, A171 (1964).
[2] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12 847

(1997).
[3] D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48,

4442 (1993).
[4] Y.-S. Lee, M. B. Nardelli, and N. Marzari, Phys. Rev. Lett.

95, 076804 (2005).
[5] W. Kohn, Phys. Rev. 115, 809 (1959).
[6] M. Stengel and N. A. Spaldin, Phys. Rev. B 73, 075121

(2006).
[7] J. J. Rehr and W. Kohn, Phys. Rev. B 10, 448 (1974).
[8] G. Nenciu, Commun. Math. Phys. 91, 81 (1983).
[9] E. Prodan and W. Kohn, Proc. Natl. Acad. Sci. U.S.A. 102,

11 635 (2005).
[10] I. Schnell, G. Czycholl, and R. C. Albers, Phys. Rev. B 65,

075103 (2002).
[11] J. Kim, F. Mauri, and G. Galli, Phys. Rev. B 52, 1640

(1995).
[12] R. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107

(2001).
[13] D. N. Sheng and Z. Y. Weng, Phys. Rev. Lett. 75, 2388

(1995).
[14] P. N. Walker and M. Wilkinson, Phys. Rev. Lett. 74, 4055

(1995).
[15] C. M. Canali, A. Cehovin, and A. H. MacDonald, Phys.

Rev. Lett. 91, 046805 (2003).
[16] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[17] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane,

Phys. Rev. Lett. 97, 036808 (2006).
[18] J. des Cloiseaux, Phys. Rev. 135, A685 (1964).
[19] G. Strinati, Phys. Rev. B 18, 4104 (1978).
[20] Y. Katznelson, An Introduction to Harmonic Analysis

(Dover, New York, 1976).
[21] H. Bross, Z. Phys. 243, 311 (1971).
[22] E. I. Blount, in Solid State Physics, edited by F. Seitz and

D.Turnbull (Academic, New York, 1962), Vol. 13, pp. 305–
373.

[23] W. Kohn, Phys. Rev. B 7, 4388 (1973).
[24] H. Teichler, Phys. Status Solidi (b) 43, 307 (1971).
[25] Y. C. Chang, Phys. Rev. B 25, 605 (1982).
[26] M. Reed and B. Simon, Methods of Modern Mathematical

Physics (Academic, New York, 1978), Vol. IV.
[27] A. Smogunov, A. Dal Corso, and E. Tosatti, Phys. Rev. B

70, 045417 (2004).
[28] G. Nenciu, Rev. Mod. Phys. 63, 91 (1991).
[29] G. Panati, math-ph/0601034 [Ann. Inst. Henri Poincare (to

be published)].
[30] S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
[31] P. Strange, Relativistic Quantum Mechanics (Cambridge

University Press, Cambridge, England, 1998).
[32] S. G. Krantz, Function Theory of Several Complex Vari-

ables (American Mathematical Society, Providence,
2001).

[33] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[34] D. J. Thouless, J. Phys. C 17, L325 (1984).
[35] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B

62, R6065 (2000).
[36] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[37] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta,

Phys. Rev. Lett. 95, 137205 (2005).

PRL 98, 046402 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 JANUARY 2007

046402-4


