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We describe a framework for the multiscale analysis of atomistic surface processes which we apply to a
model of homoepitaxial growth with deposition according to the Wolf-Villain model and concurrent
surface diffusion. Coarse graining is accomplished by calculating renormalization-group (RG) trajectories
from initial conditions determined by the regularized atomistic theory. All of the crossover and asymptotic
scaling regimes known from computer simulations are obtained, but we also find that two-dimensional
substrates show an intriguing transition from smooth to mounded morphologies along the RG trajectory.
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Nonequilibrium phenomena in many settings are mod-
eled by lattice gases with transition rules designed to
capture the essence of atomic-scale interactions [1,2].
Our interest here is in the morphologies of fluctuating
interfaces driven by the deposition of new material.
Given an atomistic model for an experimental scenario,
there are, broadly speaking, two standard modelling meth-
odologies. The first is to perform kinetic Monte Carlo
(KMC) simulations, which yield a description of morpho-
logical evolution that is amenable to direct comparison
with experiments [3–5]. The second approach is based
on postulating a coarse-grained Langevin equation for
the system [6]. The properties of this equation can then
be ascertained either by numerical integration or with
analytic methods used in statistical dynamics [6–10].

In this Letter, we derive stochastic differential equations
directly from the rules of lattice models. We first obtain
lattice Langevin equations that embody the transition rules
of atomistic models [11,12]. This formulation is the start-
ing point for coarse graining in that the associated regu-
larized equations provide initial conditions for a dynamic
renormalization-group (RG) analysis. The points along the
RG trajectories correspond to hierarchies of equations that
describe atomistic models over expanding length and time
scales. These ideas establish a general framework for the
multiscale analysis of nonequilibrium systems.

For ease of exposition, we describe our method for a
one-dimensional (1D) substrate. We have a lattice of length
L on each site i of which is a column whose topmost
particle is at height Hi. Every surface profile corresponds
uniquely to an array H � fH1; H2; . . . ; HLg. The system
evolves according to the Chapman-Kolmogorov equation
[13] for the transition probability Tt�t0 �H3jH1� from con-
figuration H1 to H3 in the time interval t� t0,

 Tt�t0 �H3jH1� �
X
H2

Tt0 �H3jH2�Tt�H2jH1�; (1)

where t � t2 � t1 and t0 � t3 � t2. This equation is an
identity satisfied by all Markov processes and is the defini-

tive statement of the evolution of our lattice model. A
familiar special case is the master equation.

The Chapman-Kolmogorov equation can be transformed
into a more analytically tractable form by carrying out a
Kramers–Moyal–van Kampen expansion [12] to obtain
the lattice Langevin equation

 

dhi
d�
� K�1�i � �i; (2)

where hi and � are continuous height and time variables,
K�1�i is the first moment of the transition rate density, and
the �i are Gaussian noises that have zero mean and cova-
riances h�i����j��0�i � K�2�ij ���� �

0�, in which K�2�ij is the
second moment of the transition rate density and ��x� is the
Dirac delta function. The transition moments are defined
by

 K�1�i �h� �
Z
riW�h; r�dr; (3)

 K�2�ij �h� �
Z
rirjW�h; r�dr; (4)

where W�h; r� is the transition rate density from h to h�
r, and r is the array of jump lengths. W is determined by
applying the transition rules to each height configuration
that is resolved by the model.

We illustrate our method for homoepitaxial growth,
wherein new material is deposited onto a crystalline sur-
face of the same material, with concurrent surface diffu-
sion, and eventual incorporation into the growing crystal.
At temperatures too low for activated surface diffusion,
ordered growth can still occur [14] because of short-range
nonthermal motion of newly deposited species to increase
their coordination [15,16]. Examples of this effect are
transient mobility [15–17], ballistic impact [18,19], and
downward funneling [20]. A basic description of such
processes is provided by the Wolf-Villain (WV) model
[21,22]. The transition rules of this model stipulate that a
particle arriving at a randomly chosen site remains there
only if its coordination cannot be increased by moving to a
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nearest neighbor site. Otherwise, the deposition site is
chosen randomly from nearest neighbor sites that offer
the maximum coordination.

Thermally activated diffusion is modeled as the nearest
neighbor hopping of surface particles according to an
Arrhenius rate [23] �0e��E, where �0 � 1013 s�1, � �
1=�kBT�, kB is Boltzmann’s constant, T is the absolute
temperature, and E is the energy barrier to hopping. We
take [5,11] E � ES � niEN , where ES is the energy barrier
from the substrate and EN is the contribution from each of
the ni lateral nearest neighbors. By combining these diffu-
sion rates with the WV model for deposition, we obtain a
prototype lattice model for homoepitaxial growth [24]. For
1D substrates, our model resolves 40 configurations, but
for two-dimensional (2D) substrates, this number explodes
to 126 192. The generation and manipulation of these
configurations to evaluate Eqs. (3) and (4) are achieved
with MATHEMATICA [25].

The only remaining implementation issue arises from
the passage from discrete heights in Eq. (1) to the continu-
ous heights in Eq. (2). The comparison of nearest neighbor
heights to determine the coordination, e.g., ni � ��hi�1 �
hi� � ��hi�1 � hi� for 1D substrates, is based on the step
function �, defined by ��N� � 1 if N � 0 and ��N� � 0 if
N < 0 for integer N. For continuous heights, � must be
represented by a continuous function. We use

 ���h;�� �
1

2

Z �h

�1
�erf��s� 1���� erf�s��	ds; (5)

where � > 0 and erf is the error function. Note that
lim�!1��N;�� � ��N�. With this proviso for �, Eq. (2)
provides an extension of our original lattice model defined
by Eq. (1) to continuous height and time variables [12].

The foregoing analytic formulation is the starting point
for coarse graining the atomic-scale equations (2)–(4). We
introduce the continuous spatial variable x and the analytic
height function u�x; ��. The substitution of the Taylor
expansions of u and � into Eqs. (2)–(4) yields a convergent
series with successively higher spatial derivatives of u.
Figure 1 shows that for � > 1, the roughness curves ob-
tained from the lattice equation (2) and KMC simulations
of the WV model are in excellent agreement. This suggests
that a large-order continuum equation would accurately
describe the atomistic dynamics. For small �, however,
only terms that determine fundamental properties of the
lattice model, such as the scaling behavior, are retained
[Fig. 1 (inset)], and we find

 

@u
@�
��2r

2u��4r
4u��13r�ru�

3��22r
2�ru�2��;

(6)

where the smoothed Gaussian noise � has zero mean and
covariance h��x; ����x0; �0�i � 2D��x� x0����� �0�,
with D � D0 �D2r

2. The leading-order equation (6) is
obtained if the order of the dominant terms does not
decrease as the coarse graining of height differences

through Eq. (5) increases. This places an upper bound on
�, but the numerical value of � is not too crucial, provided
it lies below this upper bound. The values of the coeffi-
cients in Eq. (6) for the WV model are compiled in Table I.
Surface diffusion modifies the values only of �4, �22, and
D2. Their expressions, which involve the model parameters
and the substrate dimension, will be reported elsewhere.

The derivation of the leading-order continuum equa-
tion (6) relies on the expansion of Eq. (2) as a convergent
Taylor series. There are models for which higher-order
terms must be retained, for example, for reasons of stability
[26]. But there are also scenarios [27] where the form of the
continuum equation suggests that an altogether different
approach might be required. Such cases will be reserved
for future investigations.

The general form of Eq. (6) has been previously postu-
lated on the basis of symmetry arguments and subsumes
several widely studied equations of conserved surface
growth [6]: the Edwards-Wilkinson (EW) equation, u� �
�2r

2u� �, the Mullins-Herring (MH) equation, u� �
��4r

4u� �, and the Villain–Lai–Das Sarma (VLDS)
equation, u� � ��4r

4u� �22r
2�ru�2 � �, where the

noise � may be conserved (D0 � 0) or nonconserved
(D2 � 0). The justification of such equations for particular
growth scenarios typically relies on phenomenological and
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FIG. 1 (color online). Roughness w 
 �hh2�t� � hh�t�i2i	1=2

versus time, measured in monolayers (ML) deposited, for the
1D WV model with L � 40000 computed from KMC simula-
tions and solutions of the lattice equation (2) for the indicated
values of �, and the continuum equation (6) with the coefficients
in Table I (inset). Individual data sets were obtained from single
realizations. Lines with slopes � � 1=2 and � � 3=8, consistent
with random deposition and the Mullins-Herring equation, re-
spectively, are shown for comparison [34].

TABLE I. Rounded coefficients in Eq. (6) for the WV model
with substrate dimension d. The values are obtained with the
representative choices � � 10�4 (d � 1) and � � 1 (d � 2).

d �2 �4 �13 �22 D0 D2

1 2� 10�9 5� 10�5 �4� 10�17 3� 10�9 1
2 0

2 5� 10�2 1� 10�1 �4� 10�2 �4� 10�2 1
2 0
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scaling arguments to eliminate some of the terms in
Eq. (6). However, as will be shown below, even terms often
regarded as being negligible, such as �13r�ru�3, can play
a role at longer length and time scales.

We construct differential RG equations [7] to one-loop
order, which necessitates evaluating 16 Feynman-type dia-
grams and modifies the noise covariance to D � D0 �
D2r

2 �D4r
4 [9]. The details of this lengthy but standard

calculation will be presented elsewhere. Under the scale
changes x! e‘x, �! ez‘�, and u! e	‘u, the coeffi-
cients in Eq. (6) renormalize according to

 

d�2

d‘
� �z� 2��2 � Kd

d� 2

d
�13D�d

�
; (7)

 

d�4

d‘
� �z� 4��4 �

Kd
d
�2

22Ds�
d

�3 ; (8)

 

d�13

d‘
� �z� 4� 2	��13 �

AKd
d�d� 2�

�2
13D�d

�2 ; (9)

 

d�22

d‘
� �z� 4� 	��22 � 2Kd

d� 2

d
�13�22D�d

�2 ; (10)

 

dD0

d‘
� �z� d� 2	�D0; (11)

 

dD2

d‘
� �z� d� 2	� 2�D2; (12)

 

dD4

d‘
� �z� d� 2	� 4�D4 � Kd

�2
22D

2�d�2

�3 ; (13)

where Kd � Sd=�2
�
d, Sd � 2
d=2=��12 d� is the surface

area of a d-dimensional unit sphere, A � d2 � 6d� 20,
���2��4�2, Ds�

P2
i�0��d�4�2i���2�4�2	D2i�

2i,
D � D0 �D2�2 �D4�4, and � is the momentum cutoff.

To investigate crossover regimes, we define the variables

 r �
�4�2

�2 � �4�2 ; (14)

 u1 � Kd
3d2 � 14d� 28

d2�d� 2�

D0�13�d

��2 � �4�2�2
; (15)

 u2 �

�
Kd

3�6� d�
d�4� d�

D0�2
22�d�2

��2 � �4�2�3

�
1=2
; (16)

�2 � D2�2=D0, and �4 � D4�4=D0, in terms of which
the RG equations (7)–(13) reduce to

 

dr
d‘
� �2r�1� r� � 2Bru1�� 2C�1� r�u2

2�s; (17)

 

du1

d‘
� u1��d� 4r� du1�� 4Cu2

2�s	; (18)

 

du2

d‘
�u2

�
�

1

2
�d�2��3r�7Bu1��3Cu2

2�s

�
; (19)

 

d�2

d‘
� �2�2; (20)

 

d�4

d‘
� �4�4 � 2dCu2

2�2; (21)

where we have used the scaling relation implied by
Eq. (11) [8,9], � � 1� �2 � �4, �s � 4� d� 2r�
�2�2� d� 2r� � �4��d� 2r�, and

 B �
d�d� 2�2

2�3d2 � 14d� 28�
; C �

4� d
6�6� d�

: (22)

There are 12 fixed points of these RG equations, of which
only the EW fixed point (r � ui � �j � 0, for i � 1, 2 and
j � 2, 4) is stable for d � 1, 2, 3. The other fixed points
will be discussed elsewhere. The solution of Eqs. (17)–(21)
subject to the initial conditions in Eq. (6) yields the RG
trajectories of our atomistic model.

The RG trajectory of the 1D WV model (Fig. 2) shows
an initial crossover from MH to VLDS behavior, followed
by a crossover to the EW fixed point. The final crossover is
influenced by a change in the magnitude of u1 � �13.
Although this term appears insignificant in the microscopic
equation (Table I), it affects the coarse-grained properties
of the system. This trajectory is in excellent agreement
with KMC simulations [22,28], which observe the same
crossover sequence, but our analytic theory also provides
continuum equations for crossover regimes. Surface diffu-
sion does not change the crossover in Fig. 2 but, for high
enough temperatures, shifts the initial conditions towards
the MH equation with conserved noise.

A similar transition in the initial conditions from non-
conserved to conserved noise is obtained for our 2D model
with increasing temperature (Fig. 3). In contrast to the 1D
case, however, �2 changes sign along the RG trajectory,
leading to the coarse-grained equation

 

@u
@�
� �j�2jr

2u� j�4jr
4u� j�13jr�ru�

3

� �22r
2�ru�2 � �: (23)

The linearized form of this equation has a critical wave
number kc �

����������������
j�2=�4j

p
below which all modes are un-

stable. The maximally unstable mode km � kc=
���
2
p

defines
the characteristic length 2
=km that sets the scale for a
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FIG. 2 (color online). RG trajectory of the 1D WV model with
the initial conditions in Table I. The flow starts near the MH
fixed point, crosses over to the VLDS fixed point, and then to the
EW fixed point.
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regular array of islands with diverging heights, which
preempts kinetic roughening. These conclusions are con-
sistent with large-scale computer simulations of the 2D
WV model [29], where a mounded surface morphology is
observed for long simulation times.

Recent low-temperature experiments on Ge(001) [30]
have found a growth-mode transition leading to epitaxial
breakdown. The surface morphology (see Fig. 4 of
Ref. [30]) is smooth initially, but further deposition sees
the emergence of a regular array of unstable mounds. This
is precisely the sequence predicted in Fig. 3 for low tem-
peratures. In the 2D WV model, particles not only jump
down, which locally flattens the surface, but also up.
Downward jumps dominate initially, but eventually the
upward current leads to an unstable surface morphology
[29]. Figure 3 suggests that at higher temperatures, surface
diffusion delays this instability through an extended resi-
dence time near the MH fixed point.

In summary, we have described a multiscale method for
the analysis of fluctuating interfaces that provides, begin-
ning with atomistic processes, a hierarchy of Langevin
equations across length and time scales. Striking illustra-
tions of the effectiveness of our approach are provided by
the complex crossover sequence of the 1D WV model, and
by the transition from smooth to mounded surface mor-
phologies exhibited by our 2D model. Such applications
are especially pertinent for transient regimes [31–33],
where the description of growth experiments in terms of
phenomenological continuum equations remains problem-
atic. The generality of our method opens the door to similar
studies of other nonequilibrium systems.
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FIG. 3 (color online). RG trajectories of our 2D model ob-
tained from Eq. (6) for two different temperatures. Super-
imposed on the trajectories are points separated by a logarithmic
‘‘scale’’ �‘ � 1=5 [35]. The RG flow is directed towards in-
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for which Eqs. (14) and (16) imply �2 < 0 and �4 > 0.
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