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We predict an inhomogeneous phase of superfluid 3He films in which translational symmetry is
spontaneously broken in the plane of the film. This phase is energetically favored over a range of film
thicknesses, Dc2

�T�<D<Dc1
�T�, separating distinct homogeneous superfluid phases. The instability at

the critical film thickness, Dc2
� 9��T�, is a single-mode instability generating striped phase order in the

film. Numerical calculations of the order parameter and free energy indicate a second-order instability to a
periodic lattice of degenerate B-like phases separated by domain walls at Dc1

� 13��T�.
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The phases of superfluid 3He provide a beautiful ex-
ample of spontaneously broken symmetry in condensed
matter physics, exhibiting properties common to super-
conductors, nematic liquid crystals, and antiferromagnets.
Many of the unique physical properties of superfluid 3He,
including the spectrum of low-energy excitations, are con-
nected to the breaking of orbital and spin rotation symme-
tries in combination with global gauge symmetry that is
associated with superfluidity and superconductivity. In
spite of the complex order that develops, the bulk A and
B phases of 3He are translationally invariant. Indeed, trans-
lational symmetry is generally assumed to hold even in
reduced dimensions, e.g., superfluid films [1–4].

NMR measurements on relatively thick (�m) films
show evidence of an A- to B-like transition predicted
within the context of Ginzburg-Landau (GL) theory [5].
However, unexplained anomalies in film flow [6] and third
sound experiments [7] suggest that our current theoretical
understanding of the phases of superfluid 3He films is
insufficient. One of the intriguing questions raised by these
experiments is whether or not there may be qualitatively
new phases stabilized in reduced dimensions [8].

Here we report the theoretical prediction of a phase of
superfluid 3He exhibiting spontaneously broken transla-
tional symmetry. This phase is shown theoretically to be
the stable ground state of a superfluid 3He film, with the
broken translational symmetry occurring in the plane of the
film. The mechanism responsible for this phase is compe-
tition between surface depairing and domain-wall forma-
tion between degenerate ground states, and is generic to
3He confined in at least one spatial dimension [9].

The superfluid phases of 3He are Bardeen-Cooper-
Schrieffer (BCS) condensates of orbital p-wave (L � 1)
Cooper pairs formed from quasiparticles with zero total
momentum (� p, �p) near the Fermi surface in spin-
triplet (S � 1) states. In terms of the basis of triplet states
the order parameter is given by

 � � ���p̂�j""i ����p̂�j##i � �0�p̂�
1���
2
p j"# � #"i; (1)

where �m�p̂� �
P
i�x;y;zAmip̂i for m � 0, �1. There are

two bulk phases of superfluid 3He in zero field. For a
narrow temperature range near Tc at high pressures, p >
pc � 21 bar, 3He condenses into the A phase with an order
parameter of the form, �� � �� � 0 and �0 � ��T��
�p̂x � ip̂y�. This phase exhibits antiferromagnetic spin
correlations, and an orbital state that breaks time-inversion
symmetry, i.e., a condensate of pairs with orbital angular
momentum�@. The B phase, which is the stable state over
most of the phase diagram in zero magnetic field, is a
superposition of all three triplet spin states and all three
orbital states, with �� � ��T��p̂x � ip̂y�=

���
2
p

, �� �

��T��p̂x � ip̂y�=
���
2
p

, �0 � ��T�p̂z. This state describes a
condensate of spin-triplet, p-wave pairs in a state with total
angular momentum J � 0. There is a continuous manifold
of B-phase states related by a relative rotation of the spin
and orbital coordinate axes. Surface and nuclear dipolar
energies resolve most, but not all, of the degeneracy. In
addition to the bulk A and B phases, the planar (P) phase is
a possible ground state for thin films of 3He. The P phase is
a version of the B phase with �0 � 0. Alternatively, the P
phase is an equal amplitude superposition of degenerate,
time-reversed A-phase orbital states with opposite angular
momenta. As a result the P phase is degenerate with the A
phase in the weak-coupling BCS theory, but preserves
time-inversion symmetry.

Here we consider 3He films of uniform thickness, D,
bound to a solid substrate. The liquid-vapor interface is
assumed to be perfectly reflecting and atomically smooth.
Thus, we consider p! 0 bar. This is also the weak-
coupling limit for superfluid 3He, as indicated by the heat
capacity jump �C=CN ! 1:43 for p! 0 bar [11].
Substrates may provide scattering between specular and
diffuse limits depending on the degree of roughness.

Scattering of 3He quasiparticles off the free surface and
substrate suppresses the orbital p̂z component of the order
parameter (for either specular or diffuse scattering) in films
less than about 1 �m thick. We choose the x and y axes in
the plane of the film and the z axis perpendicular to the
film, and use the boundary conditions described in
Ref. [12]. In such thin films the A phase or the P phase is
stable; in the weak-coupling limit these states are degen-
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erate even with strong pairbreaking from diffuse scattering.
In thin films the excitation spectrum is typically dominated
by gapless excitations. The effect of this spectrum on
strong-coupling energies, combined with relative impor-
tance of gradient energies for low-temperature, low-
pressure thin films means that we cannot infer the relative
stability of phases from what is known about strong-
coupling energies in bulk 3He.

Microscopic calculations show that as the film thickness
increases surface scattering is unable to completely sup-
press the p̂z component of the order parameter. Results by
several groups predict that equilibrium phase for film
thickness, D * Dc�T� 	 10��T�, is the deformed B phase
described by the order parameter, �B � ��kp̂x;�kp̂y;
�zp̂z� [13], with �z � �?�T� sin��z=D� [4,12,14]. The
transition is first or second order at a critical film thickness,
Dc�T�, depending on whether the low-temperature phase is
the A phase or the P phase. The phase boundary, taken
from our earlier calculation [12], is shown in the left panel
of Fig. 1 in terms of the critical wave vector, Qz�T� �
�=Dc�T�. The inset emphasizes the reentrance (A B 
A) for T & 0:42Tc near the critical line, which suggests
that a lower energy state at low temperatures, in the vicinity
of the critical line, may be achieved by an inhomogeneous
phase that incorporates features of both phases. This is the
case, but as we show below the structure of inhomogeneous

phase is more complex than any of the homogeneous
phases and evolves over a range of film thickness.

The transition from B phase to the P phase is second
order on the critical line, Dc�T�. Thus, we first look for a
second-order instability to an inhomogeneous phase that
preempts the P-B transition. Our starting point is the weak-
coupling gap equation,
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where �����p̂;R� are the real (� ) and imaginary (� ) parts of the order parameter, and f����p̂;R; "m� � �f�p̂;R; "m� �
f�p̂;R;�"m��=2 are the corresponding pair propagators in the Matsubara formulation for equilibrium Fermi superfluids
[12,15]. These objects satisfy second-order mode equations with the order parameter providing source terms,
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Note that vf � vfp̂ is the Fermi velocity, "m � �2m�
1��T is the Matsubara energy, and !2

m � "2
m � j����j2 �

j����j2, where ���� is the order parameter of the unper-
turbed, translationally invariant phase. Lastly, ���� is the
first-order correction we seek to find. These equations are
valid up to first order in order parameter corrections, and in
their derivation we assumed that the gradient terms of f���

in strongly confined space are of the same order as f���

themselves.
For the P state we can fix the overall phase so that � is

real. We then have ���� � 0 and ���� � �k�z��p̂x; p̂y; 0�.
The instability to an inhomogeneous phase is then a single-

mode instability for pairs with zero spin projection along z
[16]. The eigenfunction for the instability has the form

 �z�p̂;R� �
X

j�x;y;z

az;j�Q�eiQ
Rp̂j: (5)

For a single-mode instability in the plane of the film we
choose Q � �Qx; 0; Qz�. The resulting solution for the
Fourier component of the Sz � 0 pair propagator is

 f���z �p̂;Q� � �!m�p̂�

P
i
az;i�Q�p̂i

1
4 �vf 
Q�2 �!2

m�p̂�
: (6)

 

FIG. 1 (color online). Left: Qz vs T phase diagram showing
reentrance for homogeneous phases. Right: instability onsets for
higher Qz�T� (orange line with boxes) for an inhomogeneous
phase with in-plane wave vector Qx�T� (red dashed curve). Note
that �0 � @vF=2�Tc � 77 nm at p � 0 bar.
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The boundary conditions on the pair propagator at the
free surface (z � D) and substrate (z � 0) yield a set of
eigenvector equations for the unstable mode. For specular
scattering by the substrate,

 f ����x; z � 0; p̂� � f����x; z � 0; p̂� (7)

for any x and p̂, with p̂ � p̂� 2n̂�n̂ 
 p̂�, and similarly for
the free surface. These boundary conditions reduce to
connections between the Fourier components of the order
parameter, az;x�Qx;�Qz� � �az;x�Qx;Qz�, az;y�Qx;
�Qz� � �az;y�Qx;Qz�, az;z�Qx;�Qz� � �az;z�Qx;Qz�,
and fixes the wave vector Qz � �=D in terms of the film
thickness D at the instability. These results and the gap
equation generate the eigenvalue equations for the mode
amplitudes, az;i�Q�,

 ln�T=Tc�az;i �
X

j�x;y;z

Iijaz;j � 0; i � x; y; z;

Iij � 6�T
X1
m�0

Z d�p̂

4�
p̂ip̂j

�
!m

1
4 �vf 
Q�2 �!2

m
�

1

"m

�
:

(8)

Translational symmetry is unbroken along the y axis in
which case Ixy � Iyz � 0. The mode amplitudes separate
into linearly independent blocks: a 2D (az;x, az;z) and a 1D
(az;y) block. A nontrivial solution to Eq. (8) exists if
�ln�T=Tc� � Iyy � 0 or �ln�T=Tc� � Ixx�ln�T=Tc� �
Izz � I2

xz � 0. The eigenvalue equation for the 1D mode
amplitude has a maximum unstable wave vector only for
the transition to the homogeneous phase, Qz � �=Dc�T�,
Qx � 0. However, the eigenvalue equation for the 2D
block gives an unstable mode Qz�Qx; T� that preempts
the homogeneous transition. The maximum value of
Qz�Qx; T� as a function of Qx for each temperature deter-
mines the lower critical film thickness, Dc2�T�<Dc�T�,
for the transition to an inhomogeneous film with broken
translational symmetry in the plane of the film. The critical
wave vector, Qz�T�, and the locus of values of Qx�T� are
shown in the right panel of Fig. 1.

The key signature of spontaneously broken translational
symmetry in the xy plane is the appearance of the order
parameter amplitudes, az;x�Qx;Qz� exp�iQxx� cos�Qzz�
and az;z�Qx;Qz� exp�iQxx� sin�Qzz�. These amplitudes
are shown in the left panel of Fig. 2 for T � 0:5Tc andD �
9:3�0 & Dc�T�. Note that the full solution for the order
parameter above the lower critical thickness also shows
very small oscillatory amplitudes for the in-plane spin
components, e.g., ax;z.

All modes with in-plane unstable wave vectors Qxy such
that jQxyj � Qx are degenerate. In the absence of an
external bias to select the direction of the unstable mode,
the instability may propagate in any direction in the plane
of the film. For D>Dc2 the spatial structure of the order
parameter that is realized is determined from the minimum
free energy. This phase may exhibit one-dimensional,
stripe-phase order, or possibly a two-dimensional structure
defined by two noncollinear wave vectors, e.g., a triangular

lattice. A comparison of the possible minimum energy
configurations of the inhomogeneous phase has not been
carried out. Here we focus on the structure of the one-
dimensional stripe phase.

The broken symmetry phase persists for film thickness
well above the original critical line, Dc�T�, for the homo-
geneous A-B transition. However, for D>Dc2�T� the gap
equation includes nonlinear driving terms that couple
modes with different wave vectors. The ground state is
periodic, but the structure is nonsinusoidal. The right panel
of Fig. 2 shows the order parameter amplitudes for a film
with D � 10�0 >Dc�T�. The basic structure of this phase
is indicated by the amplitude az;z, which has developed a
solitonlike structure separating ‘‘domains’’ of degenerate
B-like phases: e.g., �<

B � ��kp̂x;�kp̂y;��?p̂z� and
�>
B � ��kp̂x;�kp̂y;��?p̂z�. Also, centered on the soliton

is a non-B-like phase, represented by az;x, bound to the
domain wall.

This basic structure also provides a clue to the under-
lying mechanism stabilizing the inhomogeneous phase; it
is the competition between the energy associated with
surface pairbreaking and the energy cost of a domain
wall separating two degenerate B-like phases [17].
Consider the two trajectories ( labeled 1 and 2) shown in
Fig. 3. The left panel shows a homogenous B phase, while
the right panel shows two degenerate B-like phases corre-
sponding to amplitudes ��? left of a domain wall and
��? to the right.

For the trajectory 1 that reflects from the free surface we
have pz ! �pz. This sign change is the origin of surface

 

FIG. 2 (color online). Order parameter (in units of 2�Tc) for
the stripe phase at T � 0:5Tc along the film for z � 2:5�0. Left:
Dc2 <D � 9:3�0 & Dc. Right: Dc < D � 10�0 <Dc1.

 

FIG. 3 (color online). (a) Surface reflection (trajectory 1) with
pz ! �pz leads to strong pairbreaking for the homogenous B
phase. (b) Trajectory 2 is a the strong pairbreaking trajectory
because of the sign change �? ! ��?.

PRL 98, 045301 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 JANUARY 2007

045301-3



pairbreaking; it leads to the suppression of �? and the
formation of surface Andreev bound states [12]. The en-
ergy cost is directly related to the spectrum of surface
states. By contrast the shallow trajectory which passes
through the dashed plane without intersecting a surface
encounters a nearly uniform order parameter resulting in
little or no pairbreaking.

Surface pairbreaking can be suppressed locally by com-
pensating the sign change from surface reflection. In par-
ticular, for the domain-wall configuration [Fig. 3(b)] the
sign change for the scattering trajectory (pz ! �pz) is
compensated by the sign change associated with the de-
generate states on opposite sides of the domain wall
(��?). Thus, over a few coherence lengths near the
domain wall surface reflection does not lead to strong
pairbreaking, and correspondingly the energy cost of sur-
face scattering is reduced. However, it is not all ‘‘savings.’’
There is an energy cost for the domain wall. The shallow
trajectory crossing the domain wall now incurs a sign
change. Pairbreaking occurs near the domain wall and a
spectrum of Andreev bound states forms on the interface.

For very thick films [D� Dc�T�] the translationally
invariant B phase is favored because the surface pairbreak-
ing energy is small compared with the pairbreaking cost of
a domain wall. But, for sufficiently thin films the domain-
wall energy is less than the surface pairbreaking energy
and the broken symmetry phase is favored. The critical line
where one domain wall is favored over the uniform B
phase is Dc1�T�.

For D<Dc1 multiple domains are favored. Further
reduction in the film thickness favors more domain walls
until they dissolve into the P phase at the Dc2�T�, or a first-
order transition to the A phase occurs [18]. Numerical
calculations of the free energy based on the formalism
described in Ref. [12] give a range of film thicknesses of

order 0:75 �m & D & 1:0 �m for T & 0:75Tc for an en-
ergetically favored stripe phase. The approximate critical
line obtained from these calculations is labeled Dc1�T� in
the T versus D phase diagram shown in Fig. 4.

In conclusion, our calculations predict that films of
superfluid 3He should exhibit an inhomogeneous phase
with spontaneously broken translational symmetry in the
plane of the film. This phase has no analog in bulk 3He, and
should be identifiable by its anisotropic transport proper-
ties, e.g., reduced heat conductivity normal to the stripes.
Signatures of the inhomogeneous phase should also be
observable as a broadening of the NMR linewidth.
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FIG. 4 (color online). T �D-phase diagram for superfluid 3He
films in the weak-coupling limit (p � 0 bar). The phase with
crystalline order separates translationally invariant A�P� and B
phases.
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