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We present a semiclassical explanation of the so-called Bohigas-Giannoni-Schmit conjecture which
asserts universality of spectral fluctuations in chaotic dynamics. We work with a generating function
whose semiclassical limit is determined by quadruplets of sets of periodic orbits. The asymptotic
expansions of both the nonoscillatory and the oscillatory part of the universal spectral correlator are
obtained. Borel summation of the series reproduces the exact correlator of random-matrix theory.
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Quantum spectra of individual chaotic systems can be
phenomenologically described in terms of random-matrix
theory (RMT) [1,2]. This universality, asserted by the
celebrated Bohigas-Giannoni-Schmit conjecture (BGS)
[3], is an empirical fact, supported by a huge body of
experimental and numerical data. Proving its origin re-
mains a challenge in quantum or wave chaos.

Spectral fluctuations are conveniently characterized in
terms of the two-point correlation function, R����
������Y2�����2h��E� ��

2����E�
��
2��i�1, where ��E�

is the energy-dependent density of states, � � 1=h�i the
mean level spacing, and h�i denotes averaging over the
energy E. Predictions made by RMT for this correlation
function are universal in that they depend only on the
parameter �, and the fundamental symmetries of the sys-
tem considered, in particular, on whether it is time-reversal
invariant (orthogonal case) or not (unitary case). Specifi-
cally, the complex representation R��� � lim�!0ReC����
where �� � �� i� and C���� � �2

2�2 hTrG�E�
���=2��TrG�E� ���=2��i � 1

2 is employed, with
G�x� � �x�H��1 and H the Hamiltonian. The Wigner-
Dyson unitary (u) and orthogonal (o) symmetry classes of
RMT afford the asymptotic series

 C���� 	

8>><
>>:

1
2�i���2 �

e2i��

2�i���2 �u�
1

�i���2 �
P
1
n�3

�n�3�!�n�1�
2�i���n

� e2i�� P1
n�4

�n�3�!�n�3�
2�i���n �o�:

(1)

In either case, C���� is a sum of a nonoscillatory part
(power series in 1=��) and an oscillatory one (e2i�� times
a series in 1=��). Borel summation of (1) restores the
complex correlator whose extrapolation to small positive
values of � gives R��� � 1 / ��, a signature of the level
repulsion symptomatic for chaos (� � 1, 2 for the or-
thogonal, respectively, unitary symmetry.)

The question to be addressed below is how to obtain the
RMT prediction (1) for a concrete chaotic (fully hyper-
bolic) quantum system. A step in this direction was re-

cently made [4] on the basis of Gutzwiller’s semiclassical
periodic-orbit theory [5]. Gutzwiller represents the level
density ��E� as a sum over periodic orbits, whereupon the
function R��� becomes a sum over orbit pairs [6–8].
Relevant contributions to that double sum were shown
[4] to originate from orbit pairs which are identical, mu-
tually time reversed, or differ only by connections in
certain close self-encounters. By summing over all distinct
families of orbit pairs, the Fourier transform of R���, the
spectral form factor K���, was found to coincide with the
RMT prediction for times t � �TH smaller than the
Heisenberg time TH � 2�@=�, the time needed to resolve
the mean level spacing. The behavior of K��� for � > 1,
also known from RMT, was left unexplained.

We now want to fill the gap left. As a result we will
obtain the full expression for the correlation function in the
case of unitary symmetry, and an asymptotic 1=� expan-
sion amenable to Borel summation in the orthogonal case.
The oscillatory term, Fourier transformed, then comple-
ments K��� to its full form at � > 1. In many respects, our
reasoning is inspired by the field theoretical formulation of
RMT correlation functions [9], notably the existence of
‘‘anomalous saddle points’’ in the nonlinear � model [10].
It also affords a new interpretation of ideas underlying the
‘‘bootstrapping’’ [11].

The basic idea of our approach is to consider represen-
tations of C���� different from the standard one in terms of
the product of a single retarded and advanced Green func-
tion. We start from the generating function

 Z �
�

det�E�C �H� det�E�D �H�
det�E�A �H� det�E�B �H�

�
; (2)

where E�A;B;C;D are energies in the vicinity of E defined by
E�A;B;C;D � E� ��A;B;C;D�=2�. From Z, the complex corre-
lator can be accessed as

 lim
�!0

C���� � �
1

2
� 2lim

�!0

@2Z
@��A @�

�
B

��������k;
: (3)

The two derivatives produce TrG�E�A �TrG�E�B � under the
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energy average. If we subsequently identify the energies
‘‘columnwise’’ ( k ): ��A � ��C � ��, ��B � ��D � ��

�, or
‘‘crosswise’’(
 ): ��A � ��, ��B � ��

�, ��C � ��
�,

��D � �� the ratio of determinants approaches unity. The
first representation for C���� does not even require the
limit �! 0; it is widely used in RMT. Importantly, the
semiclassical approximation of either of these two exact
representations misses contributions to Z, and therefore to
C����: the first representation yields only the nonoscilla-
tory contributions, and the second (without ‘‘� 1

2’’) only the
oscillatory ones; adding both we will recover the universal
two-point correlator.

To see the emergence of these structures, let us represent
the determinants in (2) as

 

det�E�A �H�
�1� exp

�
�
Z E�A

dETrG�E�
�

	const
exp
�
i�E�A =��

X
a

Fae
iSa�E�A �=@

�
;

(4)

where the last line invokes the semiclassical expansion of
the integrated Green function into a smooth (Weyl) average
and a fluctuating (Gutzwiller) part; the latter is a sum of
periodic orbits a with action Sa and stability amplitude Fa;
for simplicity, we assume the average level density 1=� to
be constant; the periodic-orbit sum converges for ImE�A
large enough; the ‘‘const’’ in (4) comes from the lower
limit of the energy integral and cancels from the ratio of
determinants in Z.

Expanding the exponential in (4) we get a sum over
nonordered sets of periodic orbits. Such sets will be re-
ferred to as ‘‘pseudo-orbits’’ and labeled by capital letters.
We then obtain

 det�E�A �H�
�1 	 const
 ei�E

�
A =�

X
A

FAe
iSA�E�A �=@: (5)

A pseudo-orbit A may involve any number nA of compo-
nent orbits (nA � 0 pertains to the empty set which con-
tributes unity to the sum); FA is the product of the stability
amplitudes and SA the cumulative action of all component
orbits. Expressing all four determinants in (2) similarly to
(4) and (5) [e.g., using det�E�B �H� � � det�E�B �H��

�]
and writing S�E� ��=2�� 	 S�E� � T�E���=2� (T is
the period of an orbit, or the sum of periods in a pseudo-
orbit) we approximate the generating function as

 

Z	 ei��
�
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�
B��

�
C��

�
D �=2

�
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�X
a
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X
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�iSb�E�=@�i�Tb=TH���B �

X
c

Fce
iSc�E�=@�i�Tc=TH���C

�
X
d

F�de
�iSd�E�=@�i�Td=TH���D

��
(6)

 

� ei��
�
A��
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B��
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C��

�
D �=2

� X
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FAF
�
BFCF

�
D��1�nC�nD


 ei�SA�E��SB�E��SC�E��SD�E��=@


 ei�TA�
�
A�TB�

�
B�TC�

�
C�TD�

�
D �=TH

�
: (7)

Here, the mean density produces a phase factor
ei��

�
A��

�
B��

�
C��

�
D �=2. When representing the correlator as in

(3), that phase factor turns into 1 and e2i� for the column-
wise and crosswise identifications of energies, respec-
tively. Indeed, then, we can recover either the non-
oscillatory or the oscillatory contributions to C����.

Another phase factor involves the difference �S �
SA�E� � SB�E� � SC�E� � SD�E� between the cumulative
actions of (A, C) and (B, D). Because of this factor,
systematic contributions in the limit @! 0 can arise only
for quadruplets of pseudo-orbits whose action difference is
of the order of @ or smaller.

The most basic of quadruplets have each of the compo-
nent orbits of A and C repeated in either B or D, such that
�S � 0. These ‘‘diagonal quadruplets’’ may be summed
by a lowest-order cumulant expansion: denoting the
periodic-orbit sums in the exponent of (6) by X, we may
write heXidiag � expfhX2idiag=2g, wherein hX2idiag contains
only pairs of identical orbits. We find
 

Zdiag 	 exphX2idiag=2


 exp
�X
a

jFaj
2�ei�Ta=TH���

�
A��

�
B � � ei�Ta=TH���

�
A��

�
D ��

�
X
c

jFcj2�e
i�Tc=TH����C��

�
B � � ei�Tc=TH���

�
C��

�
D ��

�
: (8)

Relying on ergodicity, the resulting sums over orbits may
be evaluated by the sum rule of Hannay and Ozorio de
Almeida [12],

P
ajFaj

2��� �
R
1
T0

dT
T ���; the lower limit of

the integration is some minimal period T0 . By this rule,
e.g., the first sum turns into � ln�i���A � �

�
B ��� const�

O�@�. All four sums yield

 Zdiag 	 e
i���A��

�
B��

�
C��

�
D �=2

�
���A � �

�
D���

�
C � �

�
B �

���A � �
�
B ���

�
C � �

�
D�

�
	
; (9)

with 	 � 1 for the unitary class. For the orthogonal class
we must also consider pairs of mutually time-reversed
orbits. Therefore, each sum in (8) must be multiplied by
2 whereupon in the final result (9) we have 	 � 2.

Taking derivatives and columnwise identified energies,
we recover the leading nonoscillatory contribution to the
two-point correlator �i����2=�. Crosswise identified en-
ergies yield the oscillatory contribution �e2i��i���2=2 for
� � 2 [thus completely reproducing (1)], while for � � 1
we get zero; i.e., no oscillatory term arises up to O���2�.

Going beyond the above level of approximation, we note
that small phases may also arise from component orbits B
and D differing from A and C in topology, but only weakly
in action. The key notion of the theory is an ‘‘encounter.’’
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By that we mean a close approach of two or more mutually
almost parallel stretches of the same orbit or different
periodic orbits; examples are highlighted by thick arrows
in Fig. 1. Because of the Lyapunov divergence an encoun-
ter may last only for a relatively short time such that we can
speak of its beginning and end. The orbit pieces outside the
encounters will be called ‘‘links’’ [13]; the duration of
links is extremely large compared with the encounter
duration. Encounters are switch boxes of the hyperbolic
dynamics: Orbits and pseudo-orbits with encounters have
‘‘partner’’ (pseudo-) orbits with practically the same links
differently connected within these encounters. Since al-
most all of the orbit duration is concentrated in links, these
partners have nearly the same action as the ‘‘original’’
(pseudo-) orbit; the contributions of original and partner
orbits can thus effectively interfere [8].

The example in Fig. 1(a) involves a pseudo-orbit, say, A
which contains just one orbit with an encounter of two
stretches; C is empty. Reconnecting the links of A within
the encounter we obtain two disjoint orbits [dashed in
Fig. 1(a)], each containing one link and one encounter
stretch; their cumulative action is almost the same as for
A. These two orbits can either both be included in B such
that D remains empty, or vice versa, or one is included in B
and the other one inD. At any rate the cumulative action of
(A, C) and (B, D) almost coincide.

A second example, a so-called Sieber-Richter pair [8], is
shown in Fig. 1(b): Here the encounter consists of two
almost mutually time-reversed stretches which avoid a
crossing in one orbit and cross in the other one. The
original orbit is included in A or C, whereas its partner is
included in B or D. Such orbit pairs exist only in time-
reversal invariant systems since the motion along one of
the links is reverted in time in the partner orbit.

More complicated quadruplets involve any number of
orbits, and (A, C) and (B, D) can differ in any number of
encounters where arbitrarily many stretches come close in
phase space (modulo time-reversal for time-reversal invari-
ant systems); encounters may be self-encounters within
periodic-orbit components in a pseudo-orbit, mutual en-
counters of different periodic orbits within one pseudo-
orbit, or even from different pseudo-orbits.

As in the diagonal approximation some of the compo-
nent orbits of (A, C) may just be repeated in (B, D). To
evaluate the generating function, we must sum over all
quadruplets of this type. We can split the sum into one over
the ‘‘diagonal’’ parts of these quadruplets and one over the
orbits differing in encounters. The first subsum yields Zdiag

as in (9) such that Z � Zdiag�1� Zoff� with

 

Zoff �
X
A;B;C;D

diff: in enc:

hFAF
�
BFCF

�
D��1�nC�nDei�S=@


 ei�TA�
�
A�TB�

�
B�TC�

�
C�TD�

�
D �=TH i: (10)

To find Zoff we must classify and count quadruplets with
encounters. Their topological ‘‘structure’’ must be dealt
with first. To that end we number all encounter stretches
(stretches, for short) of A and C, ordering the orbits by
number of stretches and the stretches inside an orbit by
order of traversal starting from an arbitrary one. This
leaves

Q




!
!
! equivalent ways to label the stretches
(where!
 is the number of orbits in A,Cwith
 stretches)
and we shall later have to divide by this number. Each
structure now corresponds to one way of (i) grouping these
numbered stretches into encounters, (ii) choosing their
mutual orientation if the system is time-reversal invariant,
(iii) changing connections inside the encounters, and
(iv) dividing the original orbits among A and C and the
partner orbits among B and D.

Next, pseudo-orbit quadruplets are characterized by
phase-space separations between the encounter stretches.
To measure separations for an encounter of l stretches, we
introduce a Poincaré surface of section orthogonal to the
original orbit in an arbitrary point in one of the stretches.
The other stretches pierce through the same section in (l�
1) further points; their phase-space separation from the first
piercing can be decomposed into components ui and si
along the unstable and stable manifolds. As shown in
Ref. [4], the encounter contributes to the action difference
with

P
jsjuj and has a duration tenc �

1
� ln
c2=�maxjjsjj 


maxkjukj��, where � is the Lyapunov exponent and c a
constant whose value is unimportant.

The sum over A, B, C, D in (10) can be written as a sum
over structures and an integral over s, u and the link
durations t. The measure to be used [4,14] obtains a factor
1=��l�1tenc� from each encounter of l stretches, with � the
volume of the energy shell. The factor 1=�l�1 gives the
uniform ergodic probability density for the l� 1 later
piercings to have given s, u; the factor 1=tenc compensates
an overcounting due to the fact that the Poincaré section
may be placed anywhere inside the encounter.

We now split the phase-space integral into factors
representing the links and the encounters. To do so, we
write the time TA as a sum of durations of all links and
encounter stretches which belong to A before reconnec-
tion; TB, TC, and TD are decomposed similarly. We then
obtain an integral

R
1
0 dte

it���A or C��
�
B or D�=TH for each link

(belonging to A or C before reconnection and to B or D

 

FIG. 1 (color online). Thin full lines: sketches of periodic
orbits in configuration space. Thick: ‘‘encounters’’ where two
orbit stretches come close; arrows indicate sense of motion.
Dashed: partner orbits with changed connections in encounters.
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afterwards), and an integral
R
dl�1sdl�1u 1

�l�1tenc



ei	jsjuj=@ei�lA�
�
A�lB�

�
B�lC�

�
C�lD�

�
D �tenc=TH for each encounter

(with lA, lB, lC, lD the numbers of stretches of the encoun-
ter belonging to A, B, C, D, and lA � lC � lB � lD.)
Evaluating these integrals as in [14] we obtain a factor
i���A or C � �

�
B or D�

�1 for each link, and a factor i�lA��A �
lB�

�
B � lC�

�
C � lD�

�
D� for each encounter, while TH can-

cels out. In this way, Zoff becomes the sum over structures

 Zoff	
X

struct

	nB�nD
Q
enc
i�lA�

�
A � lB�

�
B � lC�

�
C � lD�

�
D�

��1�nC�nD
Q



!
!
!

Q
links
��i����AorC��

�
BorD�

;

where for 	 � 2 the factor 	nB�nD accounts for the two
different senses of motion on the ‘‘reconnected’’ orbits.
Summarily referring to the linear combinations of the
��A;B;C;D in the link and encounter factors as �, we infer
that Zoff is a power series in 1=�. The term �1=��m is
provided by all structures with m � L� V, with V the
number of encounters and L the number of stretches in a
structure; note L > V. This remark allows to draw all
‘‘diagrams’’ contributing to each of the first few orders of
the expansion and to evaluate their contributions.

For instance, the order m � 1 is determined by the two
diagrams in Fig. 1, whereas form � 2 we need quadruplets
with two 2-encounters or one 3-encounter. In the unitary
case, all these quadruplets either yield vanishing contribu-
tions to Z (after summing over all possible assignments of
orbits to A, B, C, D) or mutually cancel. Reassuringly, this
complies with the fact that for � � 2 the diagonal approxi-
mation exhausts the RMT result.

In the orthogonal case, off-diagonal contributions re-
main and the nonoscillatory and the oscillatory parts of
the correlator C��� are obtained according to (3). Not
surprisingly, the nonoscillatory terms are determined only
by pairs of orbits [such as Fig. 1(b)] known from the
previous work on the small-time form factor; in the present
language, either A or C, and either B or D are empty. All
genuine pseudo-orbits end up contributing nothing. The
first oscillatory term, / e2i�=�4, does involve nontrivial
pseudo-orbit quadruplets. It can be attributed to quadru-
plets of orbits involving two Sieber-Richter pairs; further
(mutually canceling) diagrams are archived in [15].
Proceeding to all orders we get the full asymptotic expan-
sions (1) in the manner of RMT.

We conclude with the following remarks. Implicit to our
present analysis is a specific order of two limits. These are
the semiclassical limit which brings in the periodic-orbit
sum in the manner of Gutzwiller in (4), alluded to as
lim�!0 below, and the vanishing of the imaginary part
ImE� � ��=2� of the complex energies and of Im�� �
�, i.e., lim�!0. We need the condition ��=� � � > 1 to
make the periodic-orbit contributions to our asymptotic
expansions well defined. It is worth noting that this condi-
tion effectively limits the orbit periods as T < TH; see
Eq. (10) where the final exponential includes a damping

e���TA�TB�TC�TD�=TH . In our limit sequence (first �! 0
with � > 1 fixed, then �! 0) the two representations, 

and k , become inequivalent, and resolve different parts of
the two-point function (oscillatory and nonoscillatory);
separate asymptotic expansions for both are required to
recover the full information. This complementarity is re-
flected in the structure of the field theoretical approach to
spectral statistics as well: the functional integral represen-
tation of Z in RMT is controlled by two saddle points [10].
In the limit �� 1, both saddles equally contribute and
give C in full in either representation, k and 
; one saddle
provides the nonoscillatory part of C, the other the oscil-
latory part. However, for � > 1, the oscillatory part gets
suppressed as e�� in the k representation, while the

 representation has the nonoscillatory part exponentially
damped. The 1=� expansions of the surviving parts co-
incide with the present results, to all orders in 1=�.

We thank Sven Gnutzmann, Ben Simons, and Hans-
Jürgen Sommers for fruitful discussions and the SFB/
TR12 of the DFG and the EPSRC for funding.
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