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Stochastic Modeling of Experimental Chaotic Time Series
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Methods developed recently to obtain stochastic models of low-dimensional chaotic systems are tested
in electronic circuit experiments. We demonstrate that reliable drift and diffusion coefficients can be
obtained even when no excessive time scale separation occurs. Crisis induced intermittent motion can be
described in terms of a stochastic model showing tunneling which is dominated by state space dependent
diffusion. Analytical solutions of the corresponding Fokker-Planck equation are in excellent agreement

with experimental data.
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Introduction.—Modeling dynamical degrees of freedom
by suitable stochastic forces is a classical subject in theo-
retical physics and applied mathematics. While the re-
placement of many degrees of freedom in a thermo-
dynamic system by Gaussian white noise is a textbook
example and the foundation of, e.g., irreversible thermo-
dynamics [1] it is quite a recent finding that few chaotic
degrees of freedom can be modeled by stochastic differen-
tial equations (cf., e.g., [2] for a seminal reference in the
context of climate research, or [3,4] for a mathematical
account). To some extent such approaches rely on the
property that certain nice chaotic dynamical systems can
be described rigorously in terms of Markov chains (cf.,
e.g., [5]). Meanwhile, the modeling of chaotic dynamics
by suitable stochastic systems has been applied in diverse
contexts, e.g., for the confirmation of stochastic models in
hydrodynamics [6], analysis of stock market data [7], or for
climate models [8].

Above all, in theoretical terms such approaches rely on
time scale separation such that irrelevant fast chaotic de-
grees of freedom can be described in terms of a noise
process acting on slow relevant degrees of freedom.
While in mathematical models time scale separation can
be usually achieved by introducing some small parameter
the situation may be less obvious in real experimental
contexts, in particular, when no established mathematical
model is at hand like in nanoscience or biophysics.
Nevertheless, even in these fields stochastic models seem
to be quite successful [9-11]. Here we want to address the
question to which extent time scale separation is crucial in
order to model chaotic degrees of freedom by a noise
process. Certain aspects of such a question might be an-
swered by numerical simulations. But then one might
suspect that the findings depend severely on the chosen
model and are of limited relevance for real world applica-
tions. We therefore prefer to tackle the problem from the
very beginning by real experiments. Our setup should be
simple so that experimental conditions can be controlled
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easily. We thus focus on electronic circuits. While one
might suspect that certain aspects of such experiments
cannot be generalized and the same limitations like in
numerical simulations may apply, one has to keep in
mind that several features in real experiments are universal,
like the occurrence of internal dynamical and external
measurement noise, the competition of these unwanted
noise sources with the chaotic motion, drift of parameters,
or limitations of the accessible observables and of the
ensemble sizes. Thus experimental verification of stochas-
tic modeling has higher predictive power than plain nu-
merical analysis.

In formal terms we want to model a dynamical system,
say, a chaotic differential equation x = f(x), by a suitable
Langevin equation. We suppose that we can measure just a
scalar time series z(z) = g[x(¢)], e.g., a component of the
state vector x or a nonlinear function of the components.
The essential features of the dynamics of z(¢) should be
captured by a stochastic differential equation with
Gaussian white noise source. Therefore, we need to esti-
mate a suitable systematic part, i.e., a drift function D,(z),
and a diffusion coefficient D,(z). There exists a standard
recipe to obtain such quantities in terms of the first and the
second moment [12]

AtD((Z) = ([z(t + At) — z()]) + o(Ar)  (la)
2AtD,(Z) = (z(t + A1) — z()]?) + o(Ar),  (1b)

where the averages are conditional averages with the con-
straint z(#) = Z. While for a stochastic differential equa-
tion Egs. (1) yield the drift and diffusion in the asymptotic
limit Az — 0 one has to observe that for the stochastic
modeling of fast chaotic systems the delay Ar has to be
large compared to the correlation time of the chaotic
motion [13]. Apart from such a constraint Eqs. (1) have
to be evaluated in the asymptotic limit of small Az. There is
of course no a priori guarantee whether a modeling in
terms of the quantities (1) is a sufficient description, e.g.,
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whether the dynamics of z(r) can be described by a
Markovian process or whether higher-order moments be-
come relevant. These problems are, in particular, crucial
when no pronounced time scale separation is available.
Thus we have to check a posteriori to which extent such
a stochastic description yields satisfactory results.

Experimental setup.—For our investigations we use a
nonlinear autonomous electronic circuit design which was
first introduced in [14]. A diagrammatic view of the circuit
is shown in Fig. 1.

The device consists of an RLC circuit that is coupled to
an RC element via a nonlinearity. The essential nonlinear
element consists of two Zener diodes Z; , (BZX85C3V3).
The current-voltage characteristics of these diodes are
shown in Fig. 1. Its shape is described by the expression
Ip(Vy = V,) = I5(AV) = sgn(AV) f(|AV]| — V), where
V,=(1.02*=0.04) V and f(x) = (Ax> + Bx*)O(x) de-
notes a third order fit with parameter values A = (13.1 =
0.7) mA/V? and B = (—1.59 * 0.15) mA/V3. Parallel to
the oscillating part of the circuit there is a negative imped-
ance converter (NIC), consisting of an operational ampli-
fier (Analog Devices AD711JN), two identical feedback
resistors R; and a resistor Ry connected to ground. This
NIC acts as a linear “‘negative resistor’” with the resistance
—Ry supplying the power for the circuit. The current
supplied to the oscillatory part of the circuit can be con-
trolled by variation of the adjustable resistor R. This vari-
able resistor acts as the control parameter of the system.
The other components of the circuit are fixed and the
corresponding parameter values are contained in Fig. 1.
We just mention that applying Kirchhoff’s rules to the
circuit one easily obtains the equations of motion [15]
but here we are not going to make use of such a mathe-
matical model.

For data acquisition we used a transient recorder card
(Meilhaus ME2600) to measure the voltage V;. This card
includes also several digital output channels which were
used for online variation of the control parameter by means
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FIG. 1. Diagrammatic view of the Shinriki oscillator. Inset:
experimental data (symbols) and analytical data fit (line) of the
current-voltage characteristics of the two Zener diodes.

of several digital resistors (Xicor X9C102/4P) replacing
the tunable resistor R. The fully computer controlled ex-
periment enabled us to measure long time series for differ-
ent control parameter values.

Increasing the control parameter the circuit shows the
typical period doubling route to chaos. Beyond a critical
control parameter value R, = 66 k() intermittency is ob-
served. The intermittency results from an attractor merging
crisis. Below the critical control parameter R. two sym-
metric attractors can be found in the phase space of the
system. The initial condition determines the state which is
attained in the long time asymptotics. For control parame-
ter values above R, a new attractor occurs, consisting of the
merged precritical attractors. The symmetry of the non-
linearity is essential for the bifurcation scenario. For the
particular circuit this chaos-chaos intermittency scenario
can be studied in detail over a wide range of control
parameter values.

The observed dynamics in the intermittency regime can
be characterized by fast oscillations on the precritical
attractors and a slow jump dynamics between two repelling
chaotic states (see Fig. 2). The typical period of the fast
oscillations is of about T,,,. ~ 1.5 ms. The mean residence
time 7 in the two chaotic states depends on the difference
between the actual and the critical control parameter,
AR = R — R,. In our experiment we observed mean resi-
dence times from 0.1 s at AR = 100 () to 3 ms at AR =
8 k(). Thus our experiment allows for a dynamical range
of parameter values of about 2 orders of magnitude. Close
to R, the mean residence time obeys a typical scaling law
[16] 7 ~ AR with a critical exponent of y ~ 0.7 [15].
Above all, a superficial inspection of the time series shows
a behavior which resembles the motion of a bistable sto-
chastic model. However, for typical parameter values of
AR there are of about 10-100 oscillations on a chaotic
saddle before a jump to the inverse image appears. Thus,
time scales of the chaotic motion are not very well sepa-
rated from the intermittent motion and it is far from ob-
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FIG. 2. Time series sample of V() for AR=R—-R. =
1.1 kQ) measured with a sampling time of 80 us.
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vious whether a bistable stochastic model captures the
essential features of the time series.

Stochastic model. —We are now going to reconstruct an
effective stochastic model from experimental data of the
voltage z(t) = V,(¢). A time series of 6 X 10° data points
with sampling time 80 us is used to estimate the drift and
the diffusion coefficient according to Egs. (1). The basic
oscillation period is of the order of T, ~ 1.5 ms at AR =
1.1 kQ while intermittent jumps take place on a time scale
of order 7 ~ 14T,,.. Evaluation of Eqgs. (1) for different
delays shows a plateau at an intermediate scale At €
[2 ms, 8 ms] (cf. Fig. 3). Thus, such values can be used
to estimate the parameters of our model.

Spatially resolved drift and diffusion functions have
been estimated using At = 4.5 ms. The conditional aver-
ages are computed on a spatial grid with step size AZ =
50 mV so that approximately each data point is generated
by an ensemble of size 5 X 103. The final results are rather
robust against these choices. Figure 4 shows the data
obtained at AR = 1.1 kQ. The drift is dominated by a
linear decay with a superimposed oscillatory structure,
while the diffusion has a unimodal shape being large in
center and small at the boundaries. The peak structure for
z=1V, € £[0.7 V, 1.4 V] seems to be an artifact gener-
ated by the spiky time series since no such feature shows up
in the stationary distribution of the voltage (cf. inset in
Fig. 4). The large scale features of drift and diffusion are
stable with respect to the details of the time series analysis.
Thus, despite the lack of pronounced time scale separation,
the method yields reproducible drift and diffusion
functions.

In order to test the accuracy of the results displayed in
Fig. 4 we check whether the corresponding stochastic
model predicts features of the dynamics, i.e., the mean
residence time 7 which can be measured independently
as well. It is of course a nontrivial task to obtain mean
residence times for Fokker-Planck models with nontrivial
drift and diffusion coefficients. For the sake of a simple
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FIG. 3. Dependence of the second moment [cf. Eq. (1b)] on the
time delay At evaluated at Z = V| = 1.8 V. Raw data (broken
line), sliding average over one period T, (solid line). Control
parameter AR = 1.1 kQ). A plateau appears for Ar€E
[2 ms, 8 ms] while for larger values of the delay the character-
istic power law decay is observed.

analytical estimate let us model the drift and diffusion
coefficients just by taking into account the essential fea-
tures of the graphs displayed in Fig. 4, i.e., let us approxi-
mate the drift by a linear expression, D,(z) = —az
neglecting the oscillating superstructure visible in the
data, and the diffusion by a parabola D,(z) = D(z3 — 72).
Such an approximation seems to be quite crude as it does
not take the strongly oscillating parts into account. These
structures seem to be caused at least partially by the finite
ensemble size since the details change slightly when time
series of different lengths are considered. But no quantita-
tive error estimates could be produced on such a basis.
Thus we stay with the simple analytical choices since both
analytical expressions obey the symmetry of the system,
and have the tremendous advantage that the corresponding
Fokker-Planck equation

op(z ) _ dzp(z, 1) +D 0%(z3 — P)plz 1)
ot 0z az?

@)

can be solved analytically. Actually, the stationary distri-
bution of Eq. (2) is given by p.(z) ~ (z3 — z?)*/@P)~1
showing a pronounced double peak structure for o < 2D,
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FIG. 4. Drift (top) and diffusion (bottom) evaluated for Ar =
4.5 ms at AR = 1.1 k{), in dependence on the voltage Z = V,
[cf. Egs. (1)]. Conditional averages were computed with a spatial
resolution AZ = 50 mV. The straight line indicates a least
square fit in the interval [—1.6 V, 1.6 V]. Inset: distribution of
V, as a histogram with resolution AZ = 50 mV.
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FIG. 5. Mean residence time 7 in dependence on the control

parameter AR. Line: experimental data from time series of
lengths 48 s recorded with step size 10 {); symbols: analytical
estimate obtained from the stochastic model [cf. Eq. (2)].

while the eigenvalues of the Fokker-Planck operator which
govern the time evolution read A,, = —na — n(n — 1)D.
Thus, there appears a spectral gap for « << D and the
stochastic model displays a slow jump process on the
time scale 7 = 2/ a.

We employ such an analytical estimate by computing
the linear trend « using a least square fit in the interval
[—1.6 V,1.6 V]. Hence, we can estimate the mean resi-
dence time of the stochastic model for different values of
the control parameter AR. Comparison with direct obser-
vations yields a remarkable coincidence (cf. Fig. 5) and the
theoretical prediction is quite accurate over a wide parame-
ter range. We therefore conclude that our stochastic model,
apart from some fine structure, captures the intermittent
features on the slow time scale.

Conclusion.—We have demonstrated that even without
a pronounced time scale separation one may successfully
model chaotic dynamics by stochastic forces. Drift and
diffusion coefficients can be constructed from experimen-
tal time series. The stochastic model is able to capture the
essential features of the intermittent motion, i.e., the quan-
titative prediction of the mean residence time over a large
parameter region. The accuracy of the residence time
spectrum seems to vindicate the validity of the Fokker-
Planck approach at least on the relevant time scales. We
made a posteriori checks for higher-order coefficients of
the Kramers-Moyal expansion. Actually, the numerical
values of the third- and fourth-order moment do not turn
out to be small. An accurate test of the Markov property of
the time series was not possible with the ensemble size at
hand. But we estimated the time scale at which non-
Markovian effects become visible to be of about 20 ms,
using conditional correlation functions. Nevertheless, both
shortcomings are apparently of minor importance for the
modeling of the current experimental intermittent time
series, as demonstrated by the results of our analysis.
Above all, such good agreement may stimulate further
applications of stochastic modeling in experiments.

Our simple analytical estimate for the mean residence
time was certainly too crude to capture all the details of the
drift and diffusion coefficients. For instance, the analytical
expressions model the chaotic repellers just by fixed
points. But such a simplification allows for a complete
analytical solution of the stochastic model. Such solution
reveals the main mechanism of the intermittent dynamics.
The spatial dependence of the diffusion function, i.e., a
multiplicative noise process, is crucial while the structure
of a potential plays a minor role. Thus, the tunneling in
such a model is dominated by diffusion. That in fact fits
with the underlying chaotic dynamics which does not give
rise to a bistable potential in an obvious way. Phase space
dependent local Lyapunov exponents cause state depen-
dent fluctuations.

In summary, modeling of chaotic motion by effective
stochastic dynamics could have a wide range of applica-
tions even for systems without extreme time scale separa-
tion. The stochastic models may reveal features about the
underlying nonlinear dynamics as well. Thus such model-
ing is more than just a practical tool. It might be used to

uncover underlying physical mechanisms in real
experiments.
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