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Using an integrated colliding-pulse mode-locked semiconductor laser, we demonstrate the existence of
nonlinear dynamics and chaos in photonic integrated circuits (PICs) by demonstrating a period-doubling
transition into chaos. Unlike their stand-alone counterparts, the dynamics of PICs are more stable over the
lifetime of the system, reproducible from batch to batch and on faster time scales due to the small sizes of
PICs.
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Integrated photonic devices containing large numbers of
lasers will become increasingly important. Photonic flip-
flops, as recently reported by some of us [1], allow for
integration densities up to 105 components per cm2. This
will impose severe requirements on reproducibility of the
circuits, similar to those reported for semiconductor de-
vices in Ref. [2]. In integrated lasers, problems with re-
production may show up as unexpected dynamics of the
output field, quite often referred to as unstable behavior or
just noise [3,4]. However, it is the aim of this Letter to
demonstrate that the output dynamics of the integrated
optical devices which we have experimentally investigated
are well behaving, well understandable, and well classifi-
able in terms of nonlinear dynamics. Systematic study of
these dynamics provides fundamental insight into the
underlying physics (a ‘‘fingerprint’’) of the integrated op-
tical circuit, on the basis of which one can redesign the
device and/or improve the processing, or simply exploit the
dynamical performance of a particular device to one’s
advantage.

The semiconductor laser is known to be sensitive to
perturbations and can easily show nonlinear dynamics in
its performance due to a combination of strong phase-
amplitude coupling, relatively high gain per length unit,
and relatively long carrier recombination lifetime com-
pared to the round-trip time of the cavity [5]. The most
famous dynamical consequence of these factors is the
relaxation oscillation, a damped periodic exchange be-
tween the intensity and inversion of the laser [6,7]. The
resulting nonlinear dynamics are undesired features for
many applications since they hamper the (cw and modu-
lation) performance of the laser. So far, this has received
not much attention from the technical community, with one
notable exception, i.e., the work by Lippi et al. on enhance-
ment of the modulation bandwidth by phase-space steering
[8–10]. Current (binary) optical telecommunications tech-
nologies are focused on the mitigation of the nonlinear
dynamics and the enhancement of ‘‘stable’’ behavior.

The last three decades of research on semiconductor
laser dynamics has revealed that many dynamical states
are actually stable modes of operation, of which continu-
ous wave (cw) operation is a subset (see Ref. [6–8] and

references therein). It is known that the dynamics arise due
to the interplay of different time scales. It is known that the
dynamics arise due to the interplay and research into
phenomena as low frequency fluctuations (LFF) in semi-
conductor lasers with external feedback and the study of
the dynamics of semiconductor lasers with optical injec-
tion [7] has helped to mature this scientific field so much
that applications can now be made [8,10,12].

To mitigate and control dynamics, lower the costs, and
increase the functionality as well as efficiency of optical
components, integration of multiple optical components on
a single chip is being pursued [13]. The decrease in size
does indeed bring about many advantages, but the prox-
imity of components on a photonic integrated circuit (PIC)
makes it possible for components to couple much stronger
and in novel configurations than a nonintegrated realiza-
tion. As far as the dynamics are concerned, the small size
tends to decrease the amount of possible operating modes,
whereas the strong coupling creates new modes of opera-
tion such that the dynamical complexity remains present in
a large parameter range for PICs. State-of-the-art material
and processing technology is at a point where couplings
can be reduced to a level as low as �50 dB between
interfaces of different materials and components on a
planar IC. Still, these small reflections are sufficient to
induce non-cw dynamics [11]. A crucial step towards
applications of nonlinear dynamics is the availability of a
technique for experimental analysis and visualization of
the dynamics, together with a rigorous theoretical descrip-
tion of the system, where each configuration on a PIC
would require its own modeling. The aim of this Letter is
to report on such analysis and visualization experiments
realized in our laboratory. The results obtained clearly
show a well-defined sequence of dynamics as a function
of the pump current of the device: a so-called period-
doubling route into chaos.

The device chosen for study is part of a series of
colliding-pulse mode-locked lasers (CPMLL) [14] that
were designed and fabricated for 40 GHz colliding-pulse
passively mode-locked laser operation at an emission
wavelength of 1:52 �m. Each chip consists of a
2 �m-wide active ridge waveguide semiconductor optical

PRL 98, 044101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 JANUARY 2007

0031-9007=07=98(4)=044101(4) 044101-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.044101


amplifier (SOA) terminated by cleaved facets (R � 0:35)
at the two ends (see inset Fig. 1). The small region in the
center is electrically isolated and can be contacted inde-
pendently. By reverse biasing this section a saturable ab-
sorber can be achieved. Such a configuration, consisting of
a long amplifier section with a short absorber in the center,
is designed to produce a train of picosecond optical pulses,
but in practice the intended dynamics are hard to achieve.
Instead, a variety of other dynamics may be observed,
depending on the precise settings of the external control
parameters, in this case the bias current and the absorber
voltage [3,4].

The measurement setup is depicted in Fig. 1 together
with a picture of an array of five CPMLLs. The chip was
glued on a temperature controlled copper mount and the
current and voltage were provided through two probes.
Light from the laser output waveguides was collected using
a lensed fibre. The signal was amplified using a SOA
between two optical isolators in order to avoid feedback
into the laser. The light was analyzed using a 50 GHz
bandwidth photodiode connected to a 50 GHz electrical
spectrum analyzer [Agilent E4448A], and a 1.25 GHz
photodiode connected to a 4-gigasample=s oscilloscope
with 1 GHz bandwidth and 2 megasamples per channel
memory [LeCroy LT584-L]. The measured rf spectrum of
the device suggests operation on many dynamical attrac-
tors as a function of the operation parameters (see, for
instance, Fig. 3, right column). We observed strong dy-
namics in the frequency range up to 1 GHz at a reverse bias
voltage of �2:4 V on the absorber. We fixed the absorber

voltage at this value and used the pump current of the SOA
sections as the bifurcation parameter. From a bifurcation-
theoretical point of view, in order to draw conclusions on
characteristic routes to certain dynamics [7,15], it is very
important that a sequence of transitions in dynamical be-
havior is observed as a function of a single parameter. We
recorded the rf spectrum of the laser together with a
500 �s long time series (2� 106 samples) of the output
power and performed a statistical analysis on the data to
reconstruct the deterministic content of the laser output
dynamics.

For the statistical analysis, we first constructed a three-
dimensional phase space � for the dynamics. We lay the
time advanced power P� � P�t� �� along one of the axes
that span � and the power P � P�t� along the second. The
choice of the delay time �must follow some rationale: first,
� must be larger than the sampling time �t; second, �
should maximize the so-called fill factor [16], i.e., it should
yield well-separated trajectories in �. Consider, for ex-
ample, a phase-space trajectory consisting of harmonic
motion with period T. A choice � � T=4 leads to a circle
in �, while for � � T=2 (and integer multiples of T) the
trajectory degenerates to a line, making the reconstruction
impossible. In this work, the delay is set to � � 4�t
throughout this analysis, where �t � 250 ps is the sam-
pling period of our oscilloscope. Note that unlike the
Takens embedding technique [16], we do not use the value
of � to search for the embedding dimension of the attrac-
tors. In contrast, we perform statistical analysis of the
phase-space trajectory, which is more robust to noise. For
the third axis of � we took the time derivative of the power,
estimated as Q�t� � �P�t��P�t���	

� , where � is chosen as
0.3 ps. This quantity is proportional to the inversion level
of the laser [5,6], an important dynamical variable.

Thus our system is represented by a phase-space trajec-
tory ~X�t� � �P�t�; P��t�; Q�t��, whose time evolution is

assumed to be given by _~X�t� � ~D� ~X�t��� ~��t�, where ~D
governs the deterministic evolution and ~��t� is the stochas-
tic contribution to the dynamics. We will reconstruct ~D���
using experimental data. The Langevin noise term is mod-
eled with an additive white noise. The choice of multi-
plicative noise would have been more realistic [17].
However, as the oscillations in the power are small com-
pared to the average level, the use of an additive noise term
does not affect the qualitative features of the dynamics nor
the reconstruction of a bifurcation sequence. We will op-
erate our lasers at least 25% above threshold, thereby
further reducing the relative influence of noise in the output
signal. Finally, we assumed that the phase-space trajectory
is a smooth curve in �, which will allow us to interpolate
our data using high order polynomials so as to achieve
accurate values of P� and also use the interpolated data to
improve the statistics of the trajectory if not enough data
points exist.

During its evolution, the phase-space trajectory ~X�t�
builds a density distribution in the phase space �. This

 

FIG. 1. The measurement setup with a picture of an array of
five 40 GHz CPMLLs. The 40 �m-long absorber is shifted
gradually from the center guaranteeing at least one laser with
a perfectly cantered saturable absorber for mode locking. The
results presented here are from the most asymmetric device
(absorber 40 �m off from the center, lowest in the array). In
the setup: I and V are the current and voltage sources, respec-
tively, TEC is the temperature controller, ISO denotes the optical
isolator, LF is the lensed fibre, and PD1 (50 GHz) and PD2
(1.25 GHz) are the two photo diodes.
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distribution is assumed to correspond to a stationary solu-
tion of the Fokker-Planck Eq. [18,19], stochastically

equivalent to the evolution equation of _~X�t� that is denoted
above. Roughly speaking, for a periodic motion such dis-
tribution would resemble a ‘‘tube,’’ centered around the
integral curves of ~D���. The width of the ‘‘tube’’ depends
on the noise diffusion strength. Clearly, for weak diffusion,
the ‘‘tube’’ will be very narrow and its width will increase
with the noise intensity. Above a certain limit intensity, the
‘‘tube’’ will blur out and it will be impossible to distinguish
different parts of the ‘‘deterministic’’ motion. This gives a
visual idea of the noise intensity beyond which our recon-
struction scheme breaks down. This analysis also reinfor-
ces the idea that the embedding parameters must be chosen
in order to maximize the fill factor. Parallel to the proce-
dure outlined in Ref. [18], we calculate the average deter-
ministic drift vector ~D. Unlike Ref. [18], where the
fundamental frequencies are on the order of kHz, we could
not acquire a large amount of data points per period of
oscillation since our fundamental frequencies were in the
1 GHz range. This is why we used polynomial interpola-
tion and only focus on the deterministic content of the
dynamics. Using the drift vector ~D, we reconstruct the
deterministic phase-space trajectory with a Euler-type
spatial-integration method and recover the deterministic
content of the phase-space trajectory of the CPMLL.

Figure 2 depicts one such result, where a subset of
experimental data points is indicated in the phase space
� by dots and the reconstructed deterministic phase-space
trajectory by the solid green line. The projections of the
phase portrait on the different phase planes are shown in
black and red, respectively. It is clear from Fig. 2 that the
phase space of our system is at least three-dimensional,
since the period-4 limit cycle that the system exhibits is
only visible in the 3D phase portrait (the self-intersection
of the phase-space trajectory, visible in the two-
dimensional phase plane projections, would be impos-
sible for a real phase-space trajectory [15] ). For the sake
of clarity, in what follows we will restrict the visualiza-
tion of the dynamics to projections on the phase planes
�1 � �P;P�� and �2 � �P;Q�. However, in all cases the
full 3D phase space has been used to calculate the drift
vector and the deterministic phase-space trajectory.

Having established a methodology for the extraction and
visualization of the deterministic dynamics exhibited by
the device, we will now show how this method was used to
study a series of bifurcations. Figure 3 depicts a sequence
of dynamics as the pump current is varied from 133.5 mA
to 139.5 mA with steps of 1 mA. The left column shows the
phase portrait in the �1 plane and the middle column in the
�2 plane. The last column shows the rf spectra of the
output power up to 1 GHz. In the interval from 133.5 mA
to 134.5 mA the laser is operating on a period-4 limit cycle
with a fundamental period of 1.31 ns and a full period of
5.22 ns. When the current is increased to 135.5 mA, the
limit cycle has lost its stability and the laser shows inter-

mittent type of dynamics, which can be a precursor to
chaos. Indeed, further increase of the pump current to
136.6 mA results in complex motion on a very long period,
if not chaotic attractor, as can be concluded from both the rf
spectra and the reconstructed deterministic trajectory. The
chaotic dynamics are exited through a period-3 limit cycle,
which appears when the current is further increased to
138.5 mA. The fundamental period of the limit cycle is

5 ns and a third of the period is
1:67 ns (600 MHz). At

 

FIG. 2 (color). A portrait of the trajectory in �. Blue dots
indicate the sampled data points; solid green shows the recon-
structed trajectory. Also the projections on the three phase planes
have been shown, where black dots are the measured data points
and the trajectory is indicated by a red solid line.

 

FIG. 3 (color). Phase plane portraits and rf spectra of the
transition in and out of chaos of the CPMLL. The left column
shows the phase portraits in �1, the middle column in �2, and the
right column is the rf spectrum up to 1 GHz. The pump current is
shown in the left corner of the plot in units of mili-Ampere.
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138.5 mA, the laser shows single-period limit-cycle oscil-
lations at a new frequency of 530 MHz while the corre-
sponding spectrum shows a weak intermittency with the
previous periodic dynamics. Note that the 530 MHz oscil-
lations are probably related to the fast oscillations under-
lying the period-3 limit cycle at 138.5 mA. This period-1
limit cycle at 530 MHz stabilizes as the current is increased
to 139.5 mA.

Although a special route of dynamics is presented here,
we have observed many similar sequences in the 
1 GHz
range in the output of the CPMLL’s for various pump
currents of the SOA and voltages and positions of the
absorbers. Recently, a new batch of similar devices was
processed, which lase at 1:55 �m and show similar non-
linear dynamical scenarios. Based on our observations, we
conclude that integrated active photonic devices intrinsi-
cally show nonlinear dynamics. The physical explanation
for one of the fundamental oscillation frequencies of the
limit cycles in Fig. 3 is the beating between the two
resonant frequencies of the compound cavity of the
CPMLL. This beat frequency is a direct measure for the
asymmetric positioning of the absorber region.

The current technological emphasis is on the narrowly
defined so-called stable performance, which leads to a
quest for stable performance of the optical devices and
generally results in increased complexity of the device
design and thus in higher costs. Our research reveals that
integrated laser devices have no lesser tendency to show
nonlinear dynamics than their nonintegrated counterparts
composed of individual optical components. In fact, non-
linear dynamics occupy most of the parameter space of
photonic integrated laser circuits (see, for instance,
Ref. [3] ) and their analysis and visualization can aid in
their improved design.

By constructing a phase space and reconstructing the
phase-space trajectory of the CPMLL, using a general
Fokker-Planck type of analysis, we have demonstrated
that the output of the CPMLL shows deterministic non-
linear dynamics. The method of Ref. [18] was improved by
6 orders of magnitude, in order to analyze dynamics on a
GHz scale. Using experimental data alone, we recon-
structed the drift vector ~D���, which contains all relevant
information of the deterministic part of the dynamics. The
drift vector can be used to analyze the dynamics further
and calculate other quantities such as Lyapunov exponents,
the fractal dimension of attractors, etc. [15,17]. These
quantities provide essential information for the exploita-
tion of the PIC dynamics in applications such as chaotic
encryption [12], phase-space steering [8–10], interfero-
metric distance measurements, and broadband light
sources. On the basis of the fingerprints of the CPMLL,
it was even possible to identify the values of the control
parameters to make the device operate as it was originally
intended.

The current trend in photonics technology is towards
large-scale photonic integration of components with com-

plex functionalities, mainly consisting of networks of
monolithically coupled devices. In this respect, the
CPMLL analyzed here is not unique at all and confronts
us with the fact that photonic integrated devices will in-
evitably exhibit deterministic nonlinear dynamics. The
good news is that unlike their stand-alone counterparts,
the dynamics of PICs are stable over the lifetime of the
device and reproducible from batch to batch. These dy-
namics are well classifiable and well understood and ready
to be exploited to our advantage.
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