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Light scattered by a regular structure of atoms can exhibit interference signatures, similar to the
classical double-slit. These first-order interferences, however, vanish for strong light intensities, restricting
potential applications. Here, we show how to overcome these limitations to quantum interference in strong
fields. First, we recover the first-order interference in strong fields via a tailored electromagnetic bath with
a suitable frequency dependence. At strong driving, the optical properties for different spectral bands are
distinct, thus extending the set of observables. We further show that for a two-photon detector as, e.g., in
lithography, increasing the field intensity leads to twice the spatial resolution of the second-order
interference pattern compared to the weak-field case.
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If light is scattered by a structure such that different
indistinguishable pathways connect source and detector,
then interference effects may arise [1]. The classical ex-
ample is the double-slit experiment, demonstrated experi-
mentally in numerous different setups [2]. A modern
archetype realization employs two nearby atoms scattering
near-resonant laser light [3–7]. As compared to single-
atom systems, the geometry of the two-particle setup gives
rise to interference phenomena in the scattered light. In
particular, the beautiful experiment by Eichmann et al. [3]
has led to a discussion on the interpretation of the first-
order interference effects in terms of a double slit [5]. This
interference, however, is restricted to low incident light
intensity and vanishes at strong driving [5–9]. The reason
is that in the strong-field limit, the two-particle collective
dressed states are uniformly populated, such that the inter-
ference fringe visibility is zero. This restricts potential
applications, as has been repeatedly reported in different
areas of optical physics. For example, coherent backscat-
tering from disordered structures of atoms predominantly
relies on the interference of coherently scattered light [8],
as well as the generation of squeezed coherent light by
scattering light off of a regular structure [9]. Other appli-
cations are lithography [10], where writing structures with
high contrast requires a large visibility, or precision mea-
surements and optical information processing, where
strong light fields may lead to increased resolution, high
signal-to-noise ratios or a rapid coherent system evolution.
More generally, the strong-field limit is desirable, as then
the different lines of the spectrum are well separated, just
as in the Mollow resonance fluorescence spectrum of a
single strongly driven two-level atom. The spectral sepa-
ration allows for a clearer interpretation and gives rise to an
extended set of observables.

Thus, in this Letter, we discuss quantum interference in
strong driving fields. First, we demonstrate how to recover
the first-order interference fringes in the strong-field case.
This is achieved by mediating the atom-laser interactions
through a surrounding bath with different photon mode

densities at the various dressed-state frequencies. Tech-
niques to modify the vacuum as required here have been
demonstrated in various contexts [11,12]. The spontaneous
decay rates are proportional to the density of modes at the
transition frequencies, and thus the dressed-state popula-
tions redistribute. As in the strong-field limit the spectral
lines are well separated, we are led to define optical prop-
erties for each of the spectral lines separately, yielding an
extended set of observables. We show that by a suitable
redistribution of the dressed-state populations, full inter-
ference fringe visibility can be achieved in the central band
of the emitted light, thus demonstrating the recovery of the
interference. Interestingly, in this case, the scattered light is
entirely coherent despite the strong driving. Second, we
investigate the spatial dependence of the second-order
correlation function and focus on the case of a single
two-photon detector, as, for example, in lithography with
a medium sensitive to two-photon exposure. We show that
in this setup, by increasing the driving field intensity, the
spatial resolution of the central strong-field second-order
interference pattern can be increased by a factor of 2 as
compared to the corresponding weak-field pattern. Thus
structures with high spatial resolution and signal intensity
can be created using strong driving fields. Our scheme can
be realized in a wide range of systems, and can also be
reversed to analyze the structure of the scatterers, as dis-
cussed later. Finally, we generalize our results to the case
of a linear chain of N atoms.

The model.—We first investigate a pair of distinguish-
able nonoverlapping two-state emitters, a and b, both with
atomic transition frequency !0, at positions ~ra, ~rb, and
separated by ~rab. The external laser field has frequency
!L � ckL, wave vector ~kL, and is aligned such that ~kL �
~rab � 0 (see Fig. 1). Our aim is to induce interference
phenomena in the light scattered by these radiators in the
intense driving field limit. We treat the problem in a
general form, comprising any form of the environmental
electromagnetic field (EMF) satisfying the Born-Markov
conditions. The results will be generalized to a linear
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structure ofN > 2 atoms in the final part. The laser-dressed
atomic system is described, in the electric dipole and
rotating wave approximations, by the Hamiltonian H �
H0 �HI, where

 H0 �
X
k

@�!k �!L�a
y
k ak �

X
j2fa;bg

@ ~�jRzj; (1)

 HI � i
X
k

X
j2fa;bg

� ~gk � ~dj�
�
ayk

�
Rzj

sin2�j
2
� R�j�21sin2�j

� R�j�12 cos2�j

�
e�i� ~k� ~kL��~rj � H:c:

�
: (2)

H0 represents the Hamiltonian of the free EMF and free
dressed atomic subsystems, respectively, while HI ac-
counts for the interaction of the laser-dressed atoms with
the EMF. ak and ayk are the radiation field annihilation and
creation operators obeying the commutation relations
�ak; a

y
k0 � � �kk0 , and �ak; ak0 � � �a

y
k ; a

y
k0 � � 0. The atomic

operators R�j��� � j~�ijjh ~�j describe the transitions between

the dressed states j ~�ij and j~�ij in atom j for � � � and
dressed-state populations for � � �, and satisfy the com-
mutation relation �R�j���;R

�l�
�0�0 ���jl����0R

�j�
��0 ���0�R

�j�
�0��.

The operators R�j��� can be represented through the bare

state operators via the transformations j1ij � sin�j~2ij �
cos�j~1ij and j2ij � cos�j~2ij � sin�j~1ij. We define Rzj �
j~2ijjh~2j � j~1ijjh~1j. Further, ~� � ~�j � ��

2 � ��=2�2�1=2

is the generalized Rabi frequency, with 2� � � ~d � ~EL�=@.
Here, EL is the electric laser field strength, and ~d 	 ~da �
~db is the transition dipole matrix element. The detun-
ing � � !0 �!L is characterized by cot2� � �=�2��.
The dressed-state transition frequencies are !L, !
 �
!L 
 2 ~�.

The two-particle spontaneous decay and the vacuum-
mediated collective interactions are given by the
frequency-dependent expression

 �jl�!� � @
�2
X
k

� ~gk � ~d�
2ei ~k� ~rjl��!k;!�

� ��!���jl�!� � i�jl�!��: (3)

The coupling constant between atom and environment is
gk, while ��!k;!� defines the structure of the Markovian
bath. Independent of the atom-vacuum coupling, the col-
lective parameters �jl and �jl (j � l) tend to zero in the
large-distance case rjl ! 1 which corresponds to the ab-
sence of coupling among the emitters.

Intensities.—Driving a single two-state atom with a
strong near-resonant laser field splits the resonance fluo-
rescence spectrum into the well-known three-peaked
Mollow spectrum. Then it is reasonable to consider optical
properties for each spectral band separately. A similar
splitting occurs in a two-atom system. If the laser beam
is perpendicular to the line connecting the atoms, i.e., ~kL �
~rab � 0, then the central (CB) and left or right sideband
(LB or RB) spectral intensities are given by
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1

4

X
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�~rjl; !L�hRzjRzlisin22�; (4a)
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Here, �R1
� ~rjl; !� � �R1

�!� exp�i�!=c�rjl cos�1� with
angle �1 between observation direction ~R1 and distance
vector ~rjl. This prefactor depends on the atom-environment
coupling and in general the frequency with R1 � j ~R1j �

k�1
L . We have assumed the strong-field limit ~��
f��!��; ��!��; ��!L�g and ~�� f��!���ab�!��;
��!���ab�!��; ��!L��ab�!L�g in deriving Eqs. (4).
Note that multiatom systems may exhibit additional spec-
tral line splittings due to the dipole-dipole interaction
between the emitters, if the interatomic distance is small
compared to the transition wavelength.

Visibilities.—If the interparticle separation is large
enough to ignore the line splittings caused by dipole-dipole
interactions, then the visibilities V � �Imax � Imin�=
�Imax � Imin� for each of the central, left, and right spectral
band follow from Eqs. (4) as

 

VCB � �ee � �gg � �ss � �aa; (5a)

VLB�RB� � ��ss � �aa�=�1� �ee 
 �gg�: (5b)

We have introduced in Eq. (5) the two-atom collective
dressed states as j�ei � j~2a; ~2bi, j�s�a�i � fj~2a; ~1bi 

j~2b; ~1aig=

���
2
p

, j�gi � j~1a; ~1bi. The expectation values
��� � hj��ih��ji describe the corresponding transitions
(� � �) and populations (� � �) (f�;�g 2 fe; s; a; gg). If
the population is now transferred into a particular collec-
tive dressed state, then the spectral band visibilities will
behave according to Eqs. (5). One can easily observe that
all visibilities vanish if the atomic population is uniformly
distributed over two-particle collective dressed states, re-
covering previous results [5–7].
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b
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FIG. 1. Two nearby two-state emitters a and b, separated by
~rab, and driven by a resonant strong external laser field with
wave vector ~kL. Detectors fD1; D2g are used to measure corre-
lations among the emitted photons. f�1; �2g are the angles
between ~rab and the observation directions f ~R1; ~R2g.
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Two-particle quantum dynamics.—Introducing the nota-
tions x�2��ee��gg�, y��ss��aa, and z��ee�
�gg��ss��aa	VCB, the dressed-state atomic correla-
tors in Eqs. (4) and (5) follow from Eqs. (1) and (2) as [13]
 

_x�t� � �2����x� 4	 ���ab y� 4����; (6a)

_y�t� � �	 ���ab x� 2�c�0�ab � �
����y� 2	 ���ab z; (6b)

_z�t� � 2����x� 4	 ���ab y� 4����z: (6c)

The coefficients are ��
� � ��!��sin4�
 ��!��cos4�,
	 �
�ab � ��!���ab�!��sin4�
 ��!���ab�!��cos4�, and
c�0�ab � ��!L��1� �ab�!L��sin22�. Simple analytical ex-
pressions for the two-atom steady-state quantum dynamics
can be obtained in some particular cases. For example, for
the large-distance case kLrab � 2
 one obtains 	 �
�ab ! 0

and c�0�ab ! ��!L�sin22�, such that

 x � 2����=����; y � 0; and z � �����=�����2:

(7)

In this case, the diagonal atomic dynamics is independent
of the interatomic separation.

First-order interference pattern.—For resonant driving
(� � 
=4), the atomic population is equally distributed
over the two-atom dressed states resulting in the absence
of an interference pattern. Only small values for VCB can be
obtained for off-resonant pumping, while VLB and VRB are
always zero [see Eqs. (5) and (7)]. A weak interference
pattern can be induced in the sidebands if the splitting of
the dressed levels is large such that 2 ~�=!0 
 1 is not
negligible. Then the dressed states couple differently to the
EMF, i.e., ��!���ab�!�� � ��!���ab�!�� � 0 [13].
Nevertheless, for practical situations, the first-order inter-
ference vanishes for a strongly driven atomic pair in free
space.

In the following, we show how the interference can be
recovered for two strongly driven atoms by modifying the
surrounding electromagnetic reservoir. In effect, this alters
the parameter � � ��!��=��!��, which in free space is
1. We assume the driving fields to be on resonance, i.e.,
� � 
=4, with �� f��!
�; ��!L�g. Figure 2 shows the
dependence of the central spectral band visibility, VCB �
��1� ��=�1� ���2, versus the ratio �. Maximum visibil-
ity (VCB � 1) can be obtained for �
 1 or �� 1. This
corresponds to an interference pattern with a bright center.
In these cases, �ee ! 1 (�
 1) or �gg ! 1 (�� 1),
while the other two collective dressed states are empty
(�ss � �aa � 0). Thus, VLB � VRB � 0. In other words,
if the densities of the EMF modes at the dressed transition
frequencies !
 � !L 
 2 ~� differ considerably, then
�
 1 or �� 1, and the interference pattern is recovered
in the central band. Figure 3 shows a corresponding inter-
ference pattern versus detection angle �. We now analyze
the interference in terms of scattering via symmetric and
antisymmetric collective states [6]. Transitions involving
symmetric [antisymmetric] collective states give rise to

interference with a bright [dark] center. If both channels
have equal probability, the interference fringes wash out. In
our system for �
 1 or �� 1, however, only symmetric
collective states are populated, as can be seen from the
definition of j�ei and j�gi. Thus we always find bright
center interference. Note that independent of the collective
state, the single-atom dressed states can be either symmet-
ric (j~2i) or antisymmetric (j~1i).

Our scheme can, for example, be implemented by trap-
ping the scatterers in a cavity with suitable frequency
dependence. Experiments on modifying the single-atom
Mollow spectrum in cavities have already been reported
[11]. Other methods are to embed the two particles in a
photonic band-gap material [12], or to additionally pump
the dressed-atom sample with chaotic fields [14]. The
experimental control of population in an artificial two-state
atom [15] suggests a possible realization in mesoscopic
systems. Our results can also be used to analyze the struc-
ture of the scattering material, e.g., the geometric distribu-
tion of the scatterer, in particular, using the extension to
many scatterers discussed below.

Second-order correlation functions.—We now turn to
the second-order correlation function of the resonance
fluorescence emitted in the three spectral bands,
 

g�2�CB�
~R1; ~R2� � 1�

�1� V2
CB� cos��0�1 cos��0�2

DCB
; (8a)

g�2�LB;RB�
~R1; ~R2� �

pL;R�1� cos�����1 � ����2 ��

DLB;RB
: (8b)
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FIG. 2. Central-band visibility VCB as a function of � for � �

=4 and kLrab � 2
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�!L�=4] as a function of �1. Here � � 
=4, kLrab � 20


and VCB � 0:9. Solid line: N � 8, dashed curve: N � 2.
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Here, Dn �
Q
m2f1;2g�1� Vn cos��n�m �, and pL �

2�gg=�1� �ee � �gg�2, and pR � 2�ee=�1� �ee �

�gg�
2. The argument ��n�m � knrab cos�m (m 2 f1; 2g) is

evaluated at frequency f!L;!�; !�g with wavevector kn
for the respective n values f0 � CB;� � LB;� � RBg.

For VCB � 1, one finds g�2�CB�
~R1; ~R2� � 1, i.e., fully co-

herent light. In the absence of first-order interference
(VCB;LB;RB � 0), in the standard vacuum, the second-order
correlation functions do exhibit interference:
 

g�2�CB�
~R1; ~R2� � 1� cos�1 cos�2; (9a)

g�2�LB;RB�
~R1; ~R2� � �1� cos��1 � �2��=2: (9b)

Our main interest here is the second-order spatial inter-
ference resolution [10] for a two-photon detector with
�1 � �2 	 �, e.g., a medium sensitive to two-photon ex-
posure. In the strong-field limit �=�� 1, from Eq. (9) we
find g�2�CB�

~R� � 1� cos2�. In the weak-field case �=� < 1
without spectral band separation, however, one finds
g�2�� ~R� � �s=�s� cos���2 with s � 1� 2��=��2 [6].
Remarkably, increasing the driving field strength effec-
tively doubles the spatial fringe resolution in the central
spectral band in this detector setup relevant, e.g., to lithog-
raphy. This is illustrated in Fig. 4, which shows both cases
as function of the detector positions. Thus high-resolution
spatial structures can be achieved using strong driving
fields. We note in passing that sub-Poissonian or
Poissonian photon statistics [16] can be generated in all
three spectral lines, and super-Poissonian photon statistics
in the central band, see, e.g., Eq. (9).

Multiatom sample.—We now extend our first-order in-
terference analysis to a many-atom ensemble. If N inde-
pendent two-level emitters are uniformly distributed in a
linear chain (rab � ri;i�1), then their central-band intensity
[in units of sin2�2���R�!L�=4] evaluates to

 ICB� ~R1� � N�1� z� � zF ��1�: (10)

Here, �i � kLrab cos�i, F �x� � sin2�Nx=2�=sin2�x=2�,
and z is given in Eq. (7). Maxima of ICB occur for
kLrab cos� � 2
n with z � 1, where I�max�

CB � ~R� / N2.
Thus the central-band visibility is significantly improved
(see Fig. 3), while the subwavelength pattern resolution
scales with the atom number [1].

In summary, it was shown how first-order interference
can be recovered in the fluorescence light of strongly
driven atoms. The key idea is to modify the surrounding
electromagnetic vacuum, giving rise to a redistribution of
the collective dressed-state populations. Under strong driv-
ing, visibilities have to be defined for each emitted spectral
band separately, providing an extended set of observables.
Finally, the second-order interference fringes for two-
photon detection have double resolution in the strong-field
case as compared to the weak-field pattern.
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