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We show that the coefficients of operators in the electroweak chiral Lagrangian can be bounded if the
underlying theory obeys the usual assumptions of Lorentz invariance, analyticity, unitarity, and crossing to
arbitrarily short distances. Violations of these bounds can be explained by either the existence of new
physics below the naive cutoff of the effective theory, or by the breakdown of one of these assumptions in
the short distance theory. As a corollary, if no light resonances are found, then a measured violation of the
bound would falsify generic models of string theory.
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The standard model (SM) is only an effective field
theory, a good approximation only at energies below
some scale �. This scale, however, is still undetermined.
If, as naturalness arguments indicate, new physics is re-
quired to explain the relative smallness of the weak to
Planck scale ratio, then we would expect the theory to
break down at energies of about 1 TeV. However, even if
naturalness arguments fail, we still know that the SM,
augmented by Einstein gravity, must break down at the
scale of quantum gravity, where predictive power is lost.

In searching for low-energy effects of the physics which
underlies the SM, it is prudent to take the model indepen-
dent approach of adding operators of dimension higher
than four to the SM Lagrangian and parameterizing the
new physics by their coefficients. Dimensional analysis
dictates that these coefficients contain inverse powers of
�, so the precision with which we must extract them grows
with the scale of new physics. This decoupling phenomena
makes falsifying theories of the underlying short distance
interactions [the ultraviolet (UV))] extremely difficult.
Indeed, if the scale of quantum gravity is as high as the
Planck scale, it becomes interesting to ask the question as
to whether or not the theory is, even in principle, falsifiable.
One possibility is that the mathematical structure leads to
unique low-energy predictions. However, in the case of
string theory, recent progress seems to indicate that this is
not a likely scenario. Another possibility is that there are
low-energy, non-Planck suppressed, consequences of some
underlying symmetries. Symmetries link the UV and the
infrared (IR) by distinguishing between universality
classes. However, string theory does not seem to have
any problems generating the low-energy symmetries man-
ifested at energies presently explored. Indeed, given the
enormous number of string vacua, it may be that string
theory can accommodate whatever new physics is found at
the TeV scale by the Large Hadron Collider (LHC).

Thus it seems that decoupling may have the effect of
rendering string theory unfalsifiable. However, dispersion
relations can be used to establish bounds which, if violated,

imply that the underlying theory cannot obey the usual
assumptions of Lorentz invariance, crossing, unitarity, and
analyticity. This type of bound was raised a long time ago
in the context of chiral perturbation theory [1–3] and was
recently revisited in [4]. In this Letter, we will show that
such assumptions in general lead to bounds on the values of
coefficients of higher dimension operators in the SM. (This
possibility was raised in [4].) As we shall see, the utility of
these bounds depends upon the value of the Higgs boson
mass.

In the absence of a light Higgs particle, symmetry con-
siderations dictate that the electroweak symmetry breaking
sector of the SM be described by a chiral Lagrangian of the
nonlinearly realized spontaneously broken SU�2� �U�1�.
We will derive bounds on certain parameters in the
Lagrangian which are not well constrained from oblique
corrections. For simplicity, we will assume that the
strongly coupled dynamics responsible for electroweak
symmetry breaking preserves a custodial SU�2� symmetry.
This assumption, which is empirically validated by the fact
that the � parameter is so close to unity, drastically reduces
the number of terms in the effective Lagrangian. The
Lagrangian we consider [5] contains, in addition to the
usual field strength terms for the electroweak gauge bo-
sons, a derivative expansion in the SU�2� nonlinear sigma
model fields,
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fields here play the role of the would-be Goldstone bosons
arising from the broken gauge symmetry. Had we not
imposed the custodial symmetry, we would have included
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six additional operators. The coefficient �1 is strongly
constrained by virtue of its contribution to the gauge boson
self energies at tree level [6]. The coefficients �2 and �3

contribute at tree level to the anomalous three gauge boson
vertices which have been studied at LEP [6]. Given the
constraints on these parameters, they will not be consid-
ered in our analysis, as their effect on our bounds are small,
although their inclusion is straightforward. The final two
coefficients, �4 and �5, contribute to two scattering at tree
level, and bounds on them arising from loop corrections to
the T parameter are rather weak [7]. It is these coefficients
that we bound below.

The bounds on these couplings are obtained by consid-
ering longitudinal ZZ ! ZZ and WZ! WZ scattering.
Assuming Lorentz invariance, analyticity, and unitarity,
the forward scattering amplitude T satisfies the twice
subtracted dispersion relation
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Here and below, s, t, and u are Mandelstam variables. We
have used the optical theorem to express the discontinuity
across the cut in terms of the scattering cross section � and
the crossed channel cross section �u. For simplicity, we
have denoted by m the mass of the scattering particles, but
more precisely 2m2 should be replaced by 2m2

Z and m2
Z �

m2
W for ZZ ! ZZ and ZW ! ZW, respectively. We have

introduced T � T̂� pole term, where the pole term arises
from the exchange of a gauge boson. The s-channel poles
are of the form p�s�=�s�m2�, where p is a polynomial.
Since the degree of p is at most 3, the pole cancels from
both sides of a twice subtracted dispersion relation. The t
channel poles vanish upon differentiation. Note that the
existence of a long range force renders the charged particle
scattering total cross section divergent (a pole at t � 0).
Our bounds will rely only on interactions which contain no
Coulomb singularities. To obtain bounds, we will use the
Equivalence Theorem (ET) to approximate the scattering
amplitude of longitudinally polarized massive vector bo-
sons, T̂, by that of pseudo Goldstone bosons [8–10]. The
ET has been studied extensively. It is by now well under-
stood, in a loop expansion, how an amplitude for scattering
of (longitudinal) vector particles in a gauge theory can be
reproduced by that of pseudoscalars in a nonlinear sigma
model [11–14] to leading order in an expansion in m2=s
and g2.

The ET approximation is valid provided s
 m2. Hence
we take s� v2 � i0 in the dispersion relation. In this
regard, we deviate from the classical analysis, which takes
s below threshold, s < 4m2, and real. We then break the
integral in Eq. (2) into two terms, the integrals from 4m2 to
kv2 and from kv2 to 1. For the latter, we use the fact that
the cross section is positive definite, while the former is
computed using the ET to evaluate the cross section.

The constant k is chosen to minimize the error intro-
duced by our approximations while keeping the right side
of (2) positive. One loop electroweak corrections to the
amplitude scale as
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�4�v�2
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while chiral corrections scale as
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Hence the optimal choice of k should be a number of order
unity. It is easy to see that this can be achieved while
keeping the right side of (2) positive. In fact, calculating
�0�0 and �0�� scattering (Z0

LZ
0
L and Z0

LW
�
L scattering in

the ET approximation), we find that the values of k for
which the real part of the integrals from 4m2 to kv2 vanish,
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at a fixed value of s� i0, are well fit by

 k � 5:1�s=v2� � 0:4 (6)

 k � 5:0�s=v2� � 0:2 (7)

for �0�0 and �0�� scattering, respectively. Restricting k
so that kv2 log�s=�2�=�4�v�2 & � determines how large s
may be taken in the dispersion relation while keeping the
errors from the chiral expansion under control. For our
numerical estimates, we take � � 1=5 and explore the
range from � � 1=2� �1=5� to 2� �1=5�.

Bounds on �4; �5 follow from positivity of the right
hand side of the dispersion relation. The left hand side of
(2) may be approximated using the ET. We use the results
for one loop pion scattering calculated in Ref. [15]. Up to
second order in the chiral expansion,
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The expressions for the ci; ~T depend on which physical
amplitude is considered. The coefficients �̂4�5� are defined
in a similar fashion as the �‘i in [15], except that the
renormalization point is taken at � � v:
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with 
5 � 1 and 
4 � 2.
It is now straightforward to obtain the bounds by com-

puting the real part on the LHS of (2). Figure 1 shows the
bounds from Z0

LZ
0
L and W�L Z

0
L scattering for the chosen

value of s. The best bound (largest s) is obtained by
allowing k as large as allowed by the restriction on chiral
corrections, k log�s=�2�=16�2 & �, at � � v. We find
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 �̂ 5 � 2�̂4 � 1:08 (10)

 �̂ 4 � 0:31 (11)

These are the bounds which correspond to � � 1=5. If we
vary � by a factor of 2 or 1=2, the first bound changes by
�0:37 and �0:35, while the second by �0:13 and �0:12.
Note that we consider the choice � � 1=5 to be quite
conservative since the integral from kv2 to 1, which we
have neglected, is positive definite. The bounds are shown
in the �̂4 vs �̂5 plane in Fig. 2. It should be kept in mind
that while the fractional uncertainty in our bounds seem
large, the relevant parameters for WW scattering is the
renormalized coupling constant at a scale comparable to
the W and Z masses. The large uncertainty quoted above
corresponds to 25% and 21% uncertainty in the bounds for
the renormalized couplings at �2 � 4m2

W . The dominant
error on these bounds is due to electroweak loop correc-
tions whose contributions are down by g2v2=s  0:4g2,
where the last equality is from the numerical value of v2=s
obtained by restricting the chiral corrections to be smaller
than � � 1=5. These corrections, which are not included in
(10) and (11), are unlike the chiral corrections in that they
are calculable and will appear in a subsequent publication
[16]. Alternatively, we can estimate the uncertainty intro-

duced by our approximations by recomputing the bounds
retaining the subleading terms in m2=s in the pion scatter-
ing amplitude. The result is to move down the bound on
�̂5 � 2�̂4 in (10) to 1.04 while the bound on �̂4 in (11)
stays at 0.31, consistent with the error estimates above.

In the future it may be possible to measure these coef-
ficients through measurements of WW or ZZ scattering at
the LHC or the NLC. Studies suggest a sensitivity to (�4,
�5) in WW and ZZ scattering at a linear collider that could
well establish a result in contradiction with our bounds
[17,18]. The bounds can also be tested in QCD. In the limit
g; g0 ! 0, the EW chiral Lagrangian of (1) reduces to the
hadronic chiral Lagrangian[15], and the parameters of the
former, �4;5, tend towards those of the latter, ‘1;2. Working
above threshold, s > 4m2

�, as we have done here, is proba-
bly not trustworthy for bounds on parameters of the had-
ronic chiral Lagrangian since in that case m�=f� * 1 (as
compared with mW=v & 1=3), and thus the validity of the
chiral approximation used for the right hand side of the
dispersion relation comes into question. Nevertheless,
bounds on �l1 and �l2 derived from (10) and (11) using �l1 �
4 ��5 and �l2 � 4 ��4, with ��i � �̂i �

1
4 ln�v2=m2� are con-

sistent with the experimental values quoted in [19]. It is not
necessary to choose s above threshold in the dispersion
relation to bound ‘1;2, since there is no need to invoke the
ET to perform the calculation. The optimum bound ob-
tained by working below threshold and for nonforward
scattering, t > 0 [20], reproduces the somewhat weaker
bounds found in [3].

Ref. [4] has proposed that constraints on ‘1;2 can also be
obtained by requiring the absence of superluminal propa-
gation. When the chiral Lagrangian is expanded about the
classical background � � exp�icx�3�, for some constant
vector, c�, the absence of superluminal excitations gives
‘cl

2 > 0, ‘cl
1 � ‘

cl
2 > 0. Classical propagation in a nontrivial

background is tantamount to studying forward scattering
off that background, and, for this process, chiral loops are
generally as important as the tree-level contributions of
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FIG. 1. Bounds on electroweak chiral parameters from Z0
LZ

0
L

and W�L Z
0
L scattering as a function of s in the dispersion relation,

Eq. (2).

 

FIG. 2 (color online). Bounds on the coefficients of the elec-
troweak chiral Lagrangian, �̂4 and �̂5 renormalized at the
scale v.
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‘1;2. Including chiral loop corrections shifts the bounds
from forward scattering: up �‘2 � �39�� 92�=48 and
down �‘1 � 2 �‘2 � �9�� 36�=32. Moreover, a third bound
appears, �‘1 � 3 �‘2 � 0:91, changing the shape of the ex-
cluded region. Note that these are not the strongest bounds
obtainable on �‘1;2. Stronger bounds can be obtained from
dispersion relations in the unphysical (t! 4m2) regime
(see, e.g., [3]). But they do demonstrate the unreliability of
the classical approximation. Neglecting the chiral loops is
tantamount to making an additional assumption about the
underlying UV theory, namely, that it is weakly-coupled.
This is an unwarranted assumption about the nature of the
UV physics since it cannot be justified from considerations
of the low-energy effective theory alone.

Let us now consider the implications of our new bounds.
Suppose that no light Higgs boson is found and the bounds
are violated. There are then two logical possibilities. Either
the cutoff is lower than expected, �� 4�v, and the
subsequent power corrections, of order �s=��2 invalidate
the bounds, or the underlying theory has an Smatrix which
does not have the usual analytic properties we associate
with causal, unitary theories. The former possibility is
what we would expect if the underlying strong dynamics
leading to electroweak symmetry breaking were a large-N
gauge theory. In the large-N limit, the masses of reso-
nances are suppressed by 1=N (holding the confinement
scale fixed) and, as such, the cutoff is effectively reduced.
The masses of the resonances would have to be sufficiently
light to invalidate the bounds. It is interesting to note that
this is exactly the situation one would expect in a Randall-
Sundrum scenario where the gravitational theory is dual to
a large-N gauge theory. In principle, one could retool the
bounds in this case, by including the resonances in the
effective theory, thus raising the cutoff scale. One could
then test whether this new effective theory is the low-
energy limit of a theory with an analytic S-matrix. In the
absence of a light Higgs boson or other light resonances, a
violation of the bound on (�̂4; �̂5) would indicate a break-
down of one or more basic properties of the S-matrix. The
assumptions used in obtaining the dispersion relation are
Lorentz invariance: the amplitude can only depend upon
the three Mandelstam invariants. Analyticity and crossing:
the cuts lie on the real axis, with no singularities on the
physical sheet off the real axis. Unitarity: the imaginary
part of the scattering amplitude along the cuts is positive.
String theory, which is designed to be valid at all distance
scales, is constructed to produce an S-matrix with precisely
these properties. More generally, if the bounds are violated,
whatever underlying dynamics is responsible for the elec-
troweak chiral Lagrangian must not satisfy these basic
properties of S-matrix theory. Theories which could violate
the bound include those which violate Lorentz invariance
[21], or unitarity [22].

There remains, however, the question of what energy
scale the new physics (which violates one or more of the

above assumptions) enters and what the nature of that new
physics is. It is tempting to assert that the scale of the
unconventional new physics should not be too far above the
cutoff of the electroweak chiral Lagrangian, �� 4�v.
But, absent a better characterization of the nature of this
new physics (which, by definition, differs from that of
conventional quantum field theory or string theory), it
would be hard to present a proof of that assertion.
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