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For a second-order phase transition the critical energy range of interest is larger than the energy range
covered by a canonical Monte Carlo simulation at the critical temperature. Such an extended energy range
can be covered by performing a Wang-Landau recursion for the spectral density followed by a multi-
canonical simulation with fixed weights. But in the conventional approach one loses the advantage due to
cluster algorithms. A cluster version of the Wang-Landau recursion together with a subsequent multi-
bondic simulation improves for 2D and 3D Ising models the efficiency of the conventional Wang-Landau
or multicanonical approach by power laws in the lattice size. In our simulations real gains in CPU time
reach 2 orders of magnitude.
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Equilibrium properties of statistical physics systems are
often estimated by Markov chain Monte Carlo (MCMC)
simulations [1]. In many cases one is interested in calcu-
lating expectation values for a range of temperatures with
respect to the Gibbs canonical ensemble. It has turned out
that instead of performing simulations of the canonical
ensemble at distinct temperatures it is often advantageous
to combine them into one simulation of a ‘‘generalized’’
ensemble [2–5]; for reviews see Refs. [6–8].

While the power of generalized ensembles is well docu-
mented for first-order phase transitions and complex sys-
tems such as spin glasses and peptides (small proteins), this
is not the case for second-order phase transitions, although
the convenience of such applications is claimed by Landau
and collaborators [9]. However, they lose the crucial ad-
vantage which cluster algorithms [10,11] provide for
MCMC simulations of second-order phase transitions.
Here we present a generalization to cluster algorithms.
To keep the Letter accessible for nonexperts, we restrict
our investigations to 2D and 3D Ising models, while the
points made are generally valid for cluster algorithms.

In MCMC simulations of second-order phase transitions
one wants to cover the scaling region in which many
physical observables diverge with increasing lattice size.
So we ask the question: How large is the energy range of
this region on a finite lattice and is it eventually already
covered by a single canonical simulation at the (infinite
volume) critical temperature Tc � 1=�c?

For simplicity, our lattices are of shape LD and periodic
boundary conditions are assumed. We denote the probabil-
ity density of the energy from a canonical MCMC simu-
lation by P�E�. Finite-size scaling (FSS) arguments [12]
imply C� L�=� for the specific heat at �c, where � and �
are, respectively, the critical exponents of the specific heat
C and the correlation length �. A second-order phase
transition requires � > 0. Let us first assume �> 0. The

fluctuation-dissipation theorem gives

 h�E� Ê�2i � LD��=� where Ê � hEi; (1)

implying for the range covered by the simulation at �c

 4 E � jE0:75 � E0:25j � L
D=2��=2�; (2)

where Eq, q � 0:25 and q � 0:75, are fractiles of the
energy distribution [7]. In the vicinity of �c (A constant)

 Ê���=LD � Ê��c�=LD � A��� �c�1��; (3)

and using the hyperscaling relation [12] � � 2�D�,
Eq. (2) translates into a reweighting range

 4 �� L�1=�: (4)

The desired reweighting range is determined by the need to
cover the maxima of all divergent observables measured.
Let the maximum value of such an observable ŜL��� be
Ŝmax
L � ŜL��

max
L � and denote the critical exponent of S by

�. Then FSS theory implies

 Ŝ max
L � L�=�: (5)

Reweighting has to cover a reasonable range about the
maximum, say from �r�L to �r�L > �r�L , defined as solu-
tions of

 Ŝ L��� � rŜmax
L ; 0< r< 1; (6)

which becomes large for r small. We define �rL 2
f�r�L ; �

r�
L g to be the �r

�

L value which is further away
from �c than the other and assume

 4 �rL � j�
r
L � �cj � arL��; (7)

where ar and � > 0 are constants (� independent of r). For
sufficiently large L we suppose that
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 Ŝ L��rL� � Sreg � A�4�rL�
�� (8)

holds, where Sreg is a regular background term. Combining
Eqs. (5), (7), and (8) we conclude

 � � 1=�; (9)

i.e., the desired range (7) scales in the same way as the
canonical range (4). However, the proportionality factor ar

can be much larger than the one encountered for the
canonical range. With the modest value r � 2=3, this point
is made in Fig. 1 for the 3D Ising model on an 803 lattice.
We plot the specific heat C��� and for S��� the first
structure factor (see, e.g., Ref. [13]), whose maximum
scales �L�=�. The desired reweighting range is more
than 17 times larger than the canonical reweighting range
from a simulation at �max

L of the specific heat (in realistic
applications one does not know �c a priori and �max

L of a
suitable observable is a good substitute).

Using the same line of arguments for a logarithmic
singularity

 S��� � Sreg � A lnj�� �cj; (10)

one finds that the exponent � in Eq. (7) is no longer
independent of r, but

 � � r=�: (11)

While the canonical reweighting range scales still�L�1=�,
the desired reweighting range becomes �Lr=�, so that the
ratio desired/canonical diverges �L�1�r�=�. With S � C
the 2D Ising model provides an example.

In conclusion, many more than one canonical simulation
are typically needed to cover a relevant part of the scaling
region of a second-order phase transition. In principle this
can be done by patching canonical simulations from sev-
eral temperatures together, relying on a multihistogram
approach [14]. Besides dealing with many simulations is
tedious, weaknesses of these approaches are that the histo-
grams fluctuate independently and that their patching has

to be done in regions where the statistics is reduced due to
the decline of the number of histograms entries. More
stable estimates are obtained by constructing a generalized
ensemble, which allows the random walker to cover the
entire region of interest. This requires two steps: 1. Obtain
a working estimate of the weight factors. 2. Perform a
MCMC simulation with fixed weights.

To be definite we confine our discussion to the multi-
canonical (MUCA) simulations [3]. Extensions to cluster
algorithms are known [15,16]. We will rely on multibondic
(MUBO) simulations [15]. This defines step 2, but leaves
still many options open to deal with step 1. ‘‘Working
estimate’’ means that the approximation of the weights of
the generalized ensemble is good enough so that the energy
range in question is covered in step 2. Historically, step 1
has been one of the stumbling blocks of umbrella sam-
pling: ‘‘The difficulty of finding such weighting factors has
prevented wide applications of the umbrella sampling
method to many physical systems’’ [17]. Most convenient
is to have an efficient general purpose recursion for step 1
at hand. While designs were reported in a number of papers
[18], see also Refs. [7,8,16], the winning approach appears
to be the one of Wang and Landau (WL) [5] (although
somewhat surprisingly we found only one comparative
study [19]).

The WL recursion differs fundamentally from the earlier
approaches by iterating the weight at energy E multiplica-
tively with a factor fWL > 1 rather than additively. At a first
glance the WL approach is counterintuitive, because the
correct iteration of the weight factor close to the desired
fixed point is obviously proportional to one over the num-
ber of histogram entriesH�E� and not to 1=fH�E�WL . However,
what matters is a rapid approach to a working estimate. The
advantage of the WL over the other recursions is that it
moves right away rapidly through the targeted energy
range. When it is sufficiently covered, the iteration factor
is refined by fWL !

���������
fWL

p
, so that fWL approaches 1

rapidly. Once the system cycles with frozen weights
through the desired energy range, the goal of a working
estimate has been reached and the WL recursion is no
longer needed [20]. We now generalize this approach to
cluster algorithms.

We use the energy function of the q-state Potts models,

 E � �2
X

hiji

�qiqj ; (12)

where the sum is over the nearest-neighbor sites of a
D-dimensional cubic lattice of N � LD Potts spins, which
take the values qi � 1; . . . ; q. The factor of 2 has been
introduced so that q � 2 matches with the energy and �
conventions of the Ising model literature.

In the Fortuin-Kasteleyn (FK) cluster language [21] the
Potts model partition is written as
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FIG. 1. Canonical (indicated by ‘‘rwght’’) versus desired (en-
tire � axis) reweighting range on an 803 lattice.
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ZFK �
X

fqig

X

fbijg

Z�fqig; fbijg� with

Z�fqig; fbijg� �
Y

hiji

�a�qiqj�bij1 � �bij0	;
(13)

where a � e2� � 1. For a fixed configuration fqig of Potts
states the Swendsen-Wang updating procedure [10] is to
generate bond variables bij (simply called bonds in the
following) on links with �qiqj � 1: Bonds bij � 1 are
generated with probability p and bonds bij � 0 with
probability q so that p=q � a and p� q � 1 holds. This
gives p � 1� e�2� for bij � 1 and q � 1� p � e�2�

for bij � 0. On �qiqj � 0 links we have the new bonds
b0ij � 0 with probability one. We call bonds with bij � 1

active or set. A cluster of spins is defined as a set of spins
connected by active bonds and an update is to flip entire
clusters of spins, fqig ! fq0ig.

Let us denote the number of active bonds by B. The
MUBO partition function [15] is defined by

 ZMUBO �
X

fqig

X

fbijg

Z�fqig; fbijg�W�B�; (14)

where a bond weight factor W�B� has been introduced. A
valid updating procedure for the configurations of this
partition function is formulated in the following.

A. For qi � qj a bond is never set. This applies to the
initial as well as to the updated bond on this link, so that B
does not change. B. For qi � qj there are two possibilities:
1. The initial bond is not set, bij � 0. Then B0 � B for
b0ij � 0 and B0 � B� 1 for b0ij � 1. The updating proba-
bilities are

 P1�0! 0� �
qW�B�

qW�B� � pW�B� 1�
(15)

and P1�0! 1� � 1� P1�0! 0�. 2. The initial bond is set,
bij � 1. Then B0 � B� 1 for b0ij � 0 and B0 � B for
b0ij � 1. The updating probabilities are

 P2�1! 0� �
qW�B� 1�

qW�B� 1� � pW�B�
(16)

and P2�1! 1� � 1� P2�1! 0�.
After the configuration is partitioned into clusters [22],

the update is completed by assigning with uniform proba-
bility a spin in the range 1; . . . ; q to each cluster.

In its generalization to cluster algorithms the WL recur-
sion updates then lnW�B� according to

 lnW�B� ! lnW�B� � aWL; aWL � ln�fWL�; (17)

whenever a configuration with B bonds is visited. All
recursions are started with aWL � 1 and we iterate aWL !
aWL=2 according to the following criteria: 1. The Markov
chain just cycled from �Br�L to �Br�L and back. Here �Br�L and
�Br�L are bond estimates corresponding to �r�L and �r�L ,

respectively, determined by short canonical simulations

with starting configurations in the corresponding phases.
2. The bond histogram h�B�, measured since the last itera-
tion, fulfilled a flatness criterion hmin=hmax > cut, where
cut was equal to 1=3 in most of our runs. 3. We freeze the
weights after a last iteration is performed with the desired
minimum value amin

WL.
After a short equilibration run, measurements are per-

formed during the subsequent simulation with fixed
weights, each tuned to approximately 1000 cycling events.
Canonical expectation values at inverse temperature �,
�r�L 
 � 
 �r�L are obtained by reweighting (14).
Table I gives an overview of our 3D Ising model statistics.
The effectiveness of the recursion is seen from the fact that
it takes never more than 3% percent of the statistics used
for production (these numbers are in sweeps). Similarly the
initial simulations, which determine �Br�L and �Br�L , take less
than 3%.

From the production statistics we calculate integrated
autocorrelation times 	int and compare them in Fig. 2 with
those of a MUCA simulation. From the MUBO time series
we calculated 	int for (a) energies and (b) bonds and found
the results almost identical (slightly higher for the energies,
but indistinguishable on the scale of the figure). For
MUCA the estimates are from energies. Up to a constant
factor practically identical results are obtained from cy-
cling times. In our code one MUCA sweep was about
3 times faster than one MUBO sweep.

TABLE I. 3D Ising model simulations on L3 lattices.

L �r�L �r�L amin
WL recursion production

20 0.210 649 0.233 690 2�18 19 962 32� 32 768
30 0.216 443 0.229 336 2�18 27 344 32� 32 768
44 0.218 545 0.227 013 2�19 33 266 32� 65 536
56 0.219 755 0.225 914 2�19 56 323 32� 65 536
66 0.220 063 0.224 709 2�21 62 884 32� 131 072
80 0.220 482 0.224 377 2�21 108 618 36� 131 072
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FIG. 2. 	int�L� for the 3D Ising model (see text).
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The critical slowing down is �Lz. For the dynamical
critical exponent we find z � 2:22�11� for MUCA and z �
1:05�5� for MUBO. So the performance gain is a bit better
than linear with the lattice size L. The data in Fig. 2 scatter
more than one might have expected about the fits because
our �r�L and �r�L values are based on MCMC estimates,
which are by themselves noisy. Our exponent for cluster
updating is significantly higher than the one estimated
from simulations at �c, z � 0:50�3�, for the Swendsen-
Wang algorithm [23]. The reason is that the efficiency of
the cluster algorithm deteriorates off the critical point, even
when one is still in the scaling region. Therefore, we think
that our exponent of z � 1 reflects the slowing down in real
application more accurately than the small value of the
literature. In particular, the cluster algorithm becomes
rather inefficient for calculating the long tail of the specific
heat for �> �max

L .
In Fig. 3 we show integrated autocorrelation times from

simulations of the 2D Ising model for which we adjusted
our simulation parameter to cover the full width at half-
maximum of the specific heat. This corresponds to r � 1=2
in Eq. (11). The dynamical critical exponent takes then the
values z � 2:50�4� for MUCA and z � 1:04�2� for MUBO.
The MUCA value reflects that the number of canonical
simulations needed to cover the desired energy range
grows now �L1=2, while the canonical critical value is
approximately two [7,24].

Finally, we remark that the efficiency of simulations of
second-order phase transitions can presumably be further
improved by optimizing the weights with respect to cycling
along the lines introduced in Ref. [25].

This work started while B. B. was at Leipzig University.
In part it was supported by the U. S. Department of Energy
under Contract No. DE-FG02-97ER41022 and by the
Deutsche Forschungsgemeinschaft (DFG) under Contract
No. JA 483/23-1.

Note added in proof.—After submitting this Letter we
learned from Prof. Y. Okabe that Eq. (17) was previously
derived in Ref. [26].
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FIG. 3. 	int�L� for the 2D Ising model.
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