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A novel transport phenomenon is identified that is induced by inertial Brownian particles which move
in simple one-dimensional, symmetric periodic potentials under the influence of both a time periodic and a
constant, biasing driving force. Within tailored parameter regimes, thermal equilibrium fluctuations
induce the phenomenon of absolute negative mobility (ANM), which means that the particle noisily
moves backwards against a small constant bias. When no thermal fluctuations act, the transport vanishes
identically in these tailored regimes. ANM can also occur in the absence of fluctuations on grounds which
are rooted solely in the complex, inertial deterministic dynamics. The experimental verification of this
new transport scheme is elucidated for the archetype symmetric physical system: a convenient setup
consisting of a resistively and capacitively shunted Josephson junction device.
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A central result of thermodynamics is due to
Le Chatelier, which (loosely speaking) states that ‘‘a
change in one of the variables that describe the system at
equilibrium produces a shift in the position of the equilib-
rium that counteracts this change.’’ In particular, if a
system is at thermal equilibrium, its reaction to an applied
bias is so that the response is in the same direction of this
applied force, towards a new equilibrium.

Thus, the seemingly paradoxical situation that the sys-
tem’s response is opposite to a small external load is
prohibited by the laws of thermodynamics; it would imply
the phenomenon of an absolute negative mobility (ANM).
A possibility to circumvent the stringent conditions im-
posed by thermodynamics is, however, to go far from
equilibrium where these restrictions no longer possess
validity. Known examples of such absolute negative mobi-
lities, or likewise, absolute negative conductivity, have
been experimentally observed before within a quantum
mechanical setting in p-modulation-doped multiple
quantum-well structures [1], in semiconductor superlatti-
ces [2], and have been studied as well theoretically for ac-
dc-driven tunneling transport [3], in the dynamics of co-
operative Brownian motors [4], for Brownian transport
containing a complex topology [5,6], and in some stylized,
multistate models with state-dependent noise [7], to name
but a few.

This startling and counterintuitive transport phenome-
non has spurred renewed interest, motivated by the quest to
explore new transport scenarios in simple and easy to
fabricate devices that intrinsically exploit the abundant
source of thermal fluctuations to a constructive technologi-
cal use. Physical systems that are most suitable for this
purpose are periodic one-dimensional symmetric systems
such as phase differences across Josephson junctions [8],
rotating dipoles in external fields [9,10], superionic con-
ductors [11], and charge density waves [12]. Another
important area constitutes the noise-assisted transport of

Brownian particles [13,14], as it occurs for Brownian
motors possessing ample applications in physics and
chemistry [15].

Our main objective is to detect noise-induced ANM in
ordinary physical systems that are readily available and
which can be put to immediate use without the need to go
to extremely low temperatures and/or the use of advanced
fabrication techniques of higher-dimensional stylized
structures that generate the necessary trapping mechanism
for the occurrence of ANM; cf. the nicely tailored two-
dimensional trap geometries used in Refs. [5,6]. Our mini-
mal prerequisites for detecting ANM therefore are the use
of (i) simple, one-dimensional symmetric periodicity,
(ii) symmetric external forcing, (iii) inertial dynamics,
and (iv) thermal fluctuations. The following model setup
fulfills all of these.

We formulate the problem in terms of a Brownian
classical particle of mass M moving in a spatially periodic
potential V�x� � V�x� L� of period L and barrier height
�V, subjected to an external, unbiased time-periodic force
A cos��t� with angular frequency � and of amplitude
strength A. Additionally, a constant external force F acts
on the system.

The dynamics of the system is thus modeled by the
inertial Langevin equation [16]

 M �x� � _x � �V 0�x� � A cos��t� � F�
��������������
2�kBT

p
��t�;

(1)

where a dot and prime denote differentiation with respect
to time t and the Brownian particle’s coordinate x, respec-
tively. The parameter � denotes the friction coefficient, kB
the Boltzmann constant, and T the temperature. Thermal
fluctuations due to the coupling of the particle with the
environment are modeled by zero-mean, Gaussian white
noise ��t� with autocorrelation function h��t���s�i �
��t� s�. The spatially periodic potential V�x� is assumed

PRL 98, 040601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 JANUARY 2007

0031-9007=07=98(4)=040601(4) 040601-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.040601


to be symmetric and chosen in its simplest form, namely,

 V�x� � �V sin�2�x=L�: (2)

Upon introducing the period L and the parameter combi-
nation �0 � L

���������������
M=�V

p
as units of length and time [17],

respectively, Eq. (1) can be rewritten in dimensionless
form, reading

 

�̂x� � _̂x � �V̂0�x̂� � a cos�!t̂� � f�
������������
2�D0

p
�̂�t̂�; (3)

where x̂ � x=L and t̂ � t=�0. The remaining rescaled pa-
rameters are the friction coefficient � � ��=M��0, the
potential V̂�x̂� � V�Lx̂�=�V � V̂�x̂� 1� � sin�2�x̂�
with unit period and barrier height �V̂ � 2, the amplitude
a � LA=�V, the frequency ! � ��0, the load f �
LF=�V, the zero-mean Gaussian white noise �̂�t̂� with
autocorrelation function h�̂�t̂��̂�ŝ�i � ��t̂� ŝ�, and the
noise intensity D0 � kBT=�V. From now on, we will use
only the dimensionless variables and shall omit the ‘‘hat’’
for all quantities occurring in Eq. (3).

This Langevin equation (3) provides a simple model of
the diverse periodic systems specified in the introduction.
Yet the deterministic inertial dynamics of the nonequilib-
rium system defined by Eq. (3) exhibits a very rich and
complex behavior [18–20]. Depending on the parameter
values, periodic, quasiperiodic, and chaotic motion can
result in the asymptotic long time limit; see Fig. 1.
Different initial conditions of position and velocity can
also lead to different asymptotic behavior; i.e., various
attractors may coexist.

A rough classification of the asymptotic behavior can be
made into locked states in which the motion is confined to a
finite number of spatial periods, and running states in
which the motion is unbounded in space. For the determi-
nistic transport properties the running states are crucial. A
broad spectrum of various forms of running states exists
which comprises—apart from periodic—also chaotic mo-
tions. By adding thermal fluctuations, one typically acti-
vates a diffusive dynamics leading to random transitions
between possibly coexisting basins of attraction, which
play an analogous role to potential wells in equilibrium
systems. For example, stable locked states of the determi-
nistic system are destabilized by noise: transitions between
neighboring locked states will lead to diffusive or even
directed transport.

The most important quantifier for characterizing di-
rected transport is the asymptotic mean velocity hhvii
[17], which is defined as the average of the velocity over
the time and thermal fluctuations. The Fokker-Planck
equation corresponding to Eq. (3) cannot be analytically
solved; therefore, we carried out extensive numerical simu-
lations of the Langevin equation. Details of the employed
numerical scheme are described in Ref. [21]. Parts of our
so obtained results are presented next.

The velocity of a stable running state mostly points into
the direction of the force f. But there are also running
stable states which on average move in the opposite direc-
tion of the constant driving force, hence displaying deter-
ministic ANM [22]; see Fig. 1(b). In these deterministic
cases the energy consumed for moving uphill is taken from
the oscillating driving force.

Most remarkably, within particular parameter regimes
ANM is solely induced by thermal noise. In the case
depicted in Fig. 2 the deterministic average velocity van-
ishes for a whole range of forces around zero, whereas a

 

FIG. 1 (color online). In panel (a) we present a small part of
the bifurcation diagram of the noiseless system as a function of
the amplitude a 2 �3:8; 4:2�. The ordinate indicates the strobo-
scopic velocity in the asymptotic long time limit. The system is
biased by the positive force f � 0:1. The other parameter values
are � � 0:9 and ! � 4:9. The straight line at v � 0:9 corre-
sponds to a stable locked state. It persists for all shown values of
the driving amplitude. For amplitudes up to a � 4:04 a running
state with negative average velocity coexists. In panel (b) the
corresponding orbit is depicted for a � 3:99. It is a period 2 state
which stays within one potential well in the first period and
moves to the left neighboring state in the second period. In
panel (c) a realization of the stochastic system is displayed for
a � 4:2 and D0 � 0:001. Its average velocity is negative. In the
inset we show a typical part of the stochastic trajectory (thick
line) which contributes to the transport. For several periods of
the driving force it closely follows a deterministic unstable
periodic orbit (thin line). This orbit lies on the unstable branch
emanating from a pitchfork bifurcation at a � 3:99 of the
running state shown in panel (b). A part of the bifurcation
diagram including the first bifurcation of the period two orbit
to a stable period four orbit (solid line) and the mentioned
unstable period two orbit (dashed line) is shown in the magni-
fication in panel (a).
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very small amount of noise yields a negative mobility at
small forces. The region of ANM is bounded by the stall
forces�fstall for which the average velocities vanish. With
increasing temperature the stall force decreases and wears
off at a finite temperature.

Although the above described ANM manifests itself
only in the presence of thermal fluctuations, the underlying
relevant mechanisms are strongly influenced by the deter-
ministic dynamics of the system. At the driving strength
a � 4:2 the deterministic system possesses only one stable
orbit with period 1 which is a locked state and therefore
does not contribute to the transport. Consequently, the
current at D0 � 0 is zero. There exists, however, a large
number of unstable periodic orbits, transporting the parti-
cle in both positive and negative directions, which influ-
ence the relaxation dynamics from points lying far form the
stable locked orbit. In presence of noise, the particle is
permanently moved away from the stable orbit. In Fig. 1(c)
we depict a single realization of the stochastic dynamics at
D0 � 0:001. One observes a systematic movement of the
particle position into the negative direction. Moreover,
between noisy bursts, periods of almost regular motion
take place. All these regular parts are distinguished by
approximately the same negative average velocity and
therefore primarily contribute to the negative mobility.
One of these regions has been enlarged in the inset of
Fig. 1(c). The random trajectory strongly resembles a par-
ticular unstable orbit of the deterministic system. Upon
reducing the driving amplitude a this orbit can be identified
as the unstable branch emerging from a pitchfork bifurca-
tion of a stable orbit; see the inset of Fig. 1(a). Before the
bifurcation, the corresponding stable orbit also has nega-
tive average velocity. It is depicted in Fig. 1(b). Among
many other unstable periodic orbits this unstable remnant

of a stable running state apparently is most likely populated
by the noise.

In Fig. 3, we depict the dependence of the mobility
coefficient � � �@hhvii=@f��f � 0� versus temperature
for three cases: (i) the noise-induced ANM (a � 4:2),
(ii) a regime with deterministic ANM (a � 5:1), and
(iii) the ‘‘normal’’ or ‘‘positive’’ mobility regime (a �
4:4), when the velocity is positive for positive load, i.e.,
�> 0. For a � 4:2, there emerges an optimal temperature
at which ANM is the most prominent. For a � 5:1, a
continued increase of temperature eventually annihilates
ANM. For the amplitude strength a � 4:4, an optimal
temperature occurs at which the mobility is maximal.
There also occur regimes of so termed differential negative
mobility [21]; however, a more complete analysis is be-
yond the scope of this Letter but will be presented else-
where. In particular, the effect of noise-induced ANM in
(1) does not present an exception but can emerge as well in
different regimes.

As an application of the above theoretical study we
consider the resistively and capacitively shunted single
Josephson junction for which the absolute negative con-
ductance (ANC) can be measured, thus putting our pre-
dictions to a reality check. The phase difference � across
the junction obeys Eq. (1) with x � �� �=2, the mass is
M � �@=2e�2C, the friction coefficient � � �@=2e�2�1=R�,
the barrier height �V � EJ � �@=2e�I0, and the period
L � 2�, where C denotes the capacitance, R the normal-
state resistance of the junction, EJ � �@=2e�I0 the coupling
energy of the junction, and I0 the critical current. The load
F � �@=2e�Id corresponds to a dc-bias current, whereas
the amplitude strength A � �@=2e�Ia and the frequency �
define the external ‘‘ac-rocking’’ current. The average ve-
locity hhvii translates into the voltage V � �@=2e�!0hhvii
across the junction, wherein !0 � �2=@�

������������
EJEC
p

is the
Josephson plasma frequency with the charging energy
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FIG. 3. The mobility coefficient � � �@hhvii=@f��f � 0� de-
picted versus the dimensionless temperature strength, D0 / T,
for three values of the cosine-driving strength a; the strength a �
4:2 (solid line) corresponds to thermal noise-induced ANM. The
driving strength a � 5:1 (dashed line) corresponds to a regime
exhibiting deterministic ANM, and a � 4:4 (dotted line) is for a
normal nonlinear response regime. The remaining parameters
are ! � 4:9 and � � 0:9.
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FIG. 2. The average velocity hhvii of an inertial Brownian
particle described by Eq. (3) is depicted as a function of the
external force f for the deterministic (dashed line) and noisy
(solid line) dynamics. The system parameters are a � 4:2, ! �
4:9, � � 0:9, D0 � 0 (dashed line), and D0 � 0:001 (solid line).
The absolute mobility defined as hhvii=f assumes a negative
value for the noisy system in the range jfj< 0:17. The most
pronounced ANM occurs for small absolute values of the bias f.
For the bias force f 2 ��fstall; fstall�, with fstall � �0:17, the
Brownian particle moves opposite to the applied bias f.
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EC � e2=C. The dimensionless noise intensity D0 �
kBT=EJ. Given the above relation, the dc-current-voltage
characteristics can be obtained in the same form as pre-
sented in Fig. 2. The experimental setup to observe our
novel noise-induced ANC necessitates the following pa-
rameter values: the amplitude of the ac-current Ia �
aI0=2� � 0:67I0, an angular driving frequency � �
!!0=2� � 0:78!0, and a bias Id � fI0=2� which be-
comes Id � 0:016I0 for the bias f � 0:1 which leads to
an extremal velocity hhvii; see Fig. 2. The frequency !r �
1=�r � 1=RC which gives the relaxation time �r is !r �
��=2��!0 � 0:14!0 and temperature is of the order
kBT � EJD0 � 0:001�@=2e�I0. For example, for a junc-
tion possessing a critical current of I0 � 0:1 mA, a resis-
tance R � 2:9 �, and a capacitance of C � 20 pF, the
dc bias becomes Id � 1:6 �A, the amplitude of the ac
current is Ia � 67 �A, and the driving frequency is in
the GHz regime, i.e., � � 96 GHz. The optimal tempera-
ture occurs at T � 2:4 K and the maximal voltage is V �
0:6 �V. In turn, we predict a maximal voltage V � 2 �V
for a junction at the temperature T � 24 K with I0 �
1 mA, R � 1 �, and C � 16 pF, a dc bias Id � 16 �A,
and an ac current with amplitude Ia � 0:67 mA and fre-
quency � � 340 GHz.

Our work has demonstrated that the surprising effect of a
solely noise-induced absolute negative mobility can occur
in generic, biased symmetric systems and devices that can
be described by Eq. (1). In clear contrast, for noninertial,
overdamped systems (i.e., with M �x � 0) ANM cannot oc-
cur; this fact underpins the crucial role that inertial effects
play for this anomalous transport feature. Moreover, the
presence of a nonadiabatic, high-frequency external driv-
ing is an indispensable ingredient for ANM. Notably, the
phenomenon of ANM with Fhhvii< 0 implies that bene-
ficial power can be extracted upon the switch-on of a
positive load force F. This phenomenon of either pure
noise-induced ANM or deterministic ANM must clearly
be distinguished from the phenomenon of a noise-assisted,
directed transport occurring in Brownian motors [15]
which use a symmetry breaking of either spatial or tempo-
ral origin; for (uncoupled) Brownian motors we have that
for a bias F � 0 the current is finite (with a positive mo-
bility) while for ANM it is zero (with negative mobility).

These surprising ANM findings can readily be experi-
mentally tested with a single Josephson junction device
when driven in the experimentally available GHz regimes.
Other test systems described by the model (1) are superi-
onic conductors or rotating dipoles in external fields.
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