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The time-dependent Gross-Pitaevskii equation describes the dynamics of initially trapped Bose-
Einstein condensates. We present a rigorous proof of this fact starting from a many-body bosonic
Schrödinger equation with a short-scale repulsive interaction in the dilute limit. Our proof shows the
persistence of an explicit short-scale correlation structure in the condensate.
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Recent experiments on trapped Bose gases in the con-
densate phase [1,2] have revived interest in the rigorous
justification of the Gross-Pitaevskii (GP) theory from in-
teracting many-body Hamiltonians. In these experiments,
the gas is initially trapped by a strong magnetic field and
cooled down at very low temperatures, so that almost all
particles condensate in the same collective mode described
by a one-particle wave function ’�r�, r 2 R3. Then the
traps are instantaneously removed, and the evolution of the
condensate is observed. To describe this evolution, the GP
theory [3–5] postulates that many-body effects can be
compressed into a nonlinear on-site interaction. In units
where @ � 1 and the mass of the bosons m � 1=2, the
condensate wave function at time t, ’t � ’t�r�, satisfies
the GP equation

 i@t’t � ��r’t � �j’tj
2’t; (1)

with the normalization
R
j’t�r�j2d3r � 1. The coupling

constant is � � 8�Na, where N is the number of particles
and a is the scattering length of the interaction potential.

A single orbital theory might indicate that the full
N-body wave function essentially factorizes. This, how-
ever, is usually not the case: Very short-scale interactions
may introduce strong pair correlations that substantially
influence the energy of the system and the dynamics even
on larger scales. In particular, the emergence of the scat-
tering length in � is a correlation effect, and it is remark-
able that this correlation can be consistently modeled by
the same coupling constant along the whole evolution.

The GP equation thus implicitly postulates a persistent
two-scale structure of the state. On short scales, the state
exhibits a time-independent pair correlation, while on large
scales it is given by the product of N copies of a time-
dependent orbital. It is a fundamental problem in many-
body theory to show that the GP postulation of a two-scale
structure is a rigorous consequence of the first principle
many-body Schrödinger equation. While many theoretical
works addressed this question for low energy states, there
is no rigorous result from a dynamical point of view.

In this Letter, we shall show not only that the two-scale
structure is preserved but that it even emerges dynamically
for a class of initial data.

On the mathematically rigorous level, the GP theory has
been verified only for the ground state of the trapped Bose
gas. Lieb, Seiringer, and Yngvason [6] considered a model
where the scattering length a of the interaction varies with
N, so that Na remains constant. For repulsive interactions,
they proved that the ground state energy per particle in the
GP limit (N ! 1, a0 � Na � fixed) is given by a varia-
tional principle minfEGP�’�: k ’ k� k’kL2�R3� � 1g,
where

 E GP�’� �
Z
R3
�jr’j2 � Vextj’j2 � 4�a0j’j4� (2)

is the GP energy functional. This result was extended to
rotating Bose systems that model superfluidity in Ref. [7].

In Ref. [8], Lieb and Seiringer have also rigorously
established that the ground state of the trapped Bose gas
exhibits a complete Bose-Einstein condensation by show-
ing that the one-particle density matrix of the ground state
converges to the one-dimensional projection j’GPih’GPj,
where ’GP is the minimizer of the functional EGP.

The ground state has been known to have a nontrivial
pair correlation. Mathematically, this was first exploited
for the homogeneous dilute Bose gas by Dyson [9] to
verify the upper bound on the ground state energy obtained
from Bogoliubov theory. The proof of the lower bound,
achieved by Lieb and Yngvason 40 years later [10], dem-
onstrates that low energy states necessarily contain a char-
acteristic short-scale pair correlation. In the GP limit, as
shown in Ref. [6], the trapping potential introduces a
second length scale, but it leaves the short-scale structure
intact.

The works mentioned above justify the two-scale hy-
pothesis of the GP theory based on the energy minimizing
principle. In this Letter, we outline a mathematical proof
(see Ref. [11] for details) of the fact that the GP theory also
describes the dynamics of trapped Bose-Einstein conden-
sates. Assuming that at time t � 0 we have a condensate,
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we show, under some conditions on the interaction poten-
tial and on the initial state, that the system still exhibits
complete condensation at times t � 0 and that the conden-
sate wave function evolves according to the GP equation
(1). Our results cover two types of initial data: type I states
with the physical two-scale structure as in Refs. [6,8] and
type II states with no short-scale structure. For type I initial
data, the main difficulty is to demonstrate the persistence
of the two-scale structure even for states that are far from
the ground state. Energy conservation alone does not pre-
vent the destruction of the short-scale structure. The key
observation is that higher moments of the energy are also
conserved, and they impose stringent restrictions on the
state. In theorem 2 below, we show that a finite second
moment of the energy per particle forces a pair correlation
described by the zero energy scattering function of the
interaction potential. For type II initial data, our results
imply that the short-scale structure emerges dynamically.
See the discussion after theorem 1.

The Hamiltonian for N bosons in R3 is given by

 

~H N �
XN
j�1

���rj � Vext�rj�� �
XN
i<j

VN�ri � rj�: (3)

The trap potential Vext�r� is a positive function, with
Vext�r� ! 1 as jrj ! 1. The interaction potential is scaled
as VN�r� � N2V�Nr�, where V is a positive, spherically
symmetric, compactly supported, smooth potential with
scattering length a0. By scaling, the scattering length of
VN is a0=N. We assume that the strength of the interaction,
measured by � �

R
V�r�jrj�1dr� supr2R3 r2V�r�, is suf-

ficiently small.
Let  N be the ground state of (3) and let ��k�N be its

k-particle marginal density �1 � k � N) with a consistent
normalization Tr��k�N � 1. It was proven in Ref. [8] that

 ��k�N ! j’GPih’GPj
	k; N ! 1; (4)

for any fixed k. In particular, (4) for k � 1 means that  N
exhibits complete condensation.

After instantaneously removing the trap, the evolution of
the system is generated by the Hamiltonian

 HN �
XN
j�1

��rj �
XN
i<j

VN�ri � rj�: (5)

Theorem 1.—Let  N;t be the solution to the Schrödinger
equation i@t N;t � HN N;t, with the initial condition
 N;0 �  N , and let ��1�N;t be its one-particle marginal den-
sity. Then, for any fixed time t 2 R,  N;t exhibits complete
Bose-Einstein condensation; that is,

 Tr j��1�N;t � j’tih’tjj ! 0 as N ! 1; (6)

where ’t solves the Gross-Pitaevskii equation (1) with
� � 8�a0 and with initial data ’t�0 � ’GP.

Our proof, in fact, allows for more general initial data.
Let H1�R3� :� f’�r�:

R
j’j2 � jr’j2 <1g. The techni-

cal condition we need to conclude (6) is that the initial state

 N;0 asymptotically factorizes, in the sense that there exists
’ 2 H1�R3� and for every k 
 1 there exists a family
f��N�k�N gN
k, with ��N�k�N 2 L2�R3�N�k�� and k ’ k�
k ��N�k�N k� 1 such that

 lim
N!1

k  N;0 � ’	k 	 �
�N�k�
N k� 0: (7)

The function ’ is then the initial data for (1). As we prove
in Ref. [11], the ground state  N of the Hamiltonian (3)
satisfies (7). This shows that the pair correlations of  N,
which affect the dynamics in a nontrivial way, are not in
conflict with the asymptotic factorization as long as the
convergence in (7) is in a weaker topology than the energy
norm.

The local correlation structure of  N lives on a length
scale 1=N, and its effect, measured in the L2 sense in (7), is
negligible. However, the energy of  N does not converge to
the energy of the factorized state, and, similarly, the con-
vergence in (4) does not hold in the H1 space or in the
energy sense.

Typical type II initial data are given by a product wave
function  N;0 � ’	N , with ’ 2 H1�R3�. For  N;0, the
condition (7) holds trivially. Our result thus shows that a
product initial state also evolves according to the GP
equation [5] (with initial data ’t�0 � ’) despite the fact
that its total energy is larger than EGP�’�. In fact, it is easy
to see that the energy per particle in the factorized state
h’	N; � ~HN=N�’

	Ni is asymptotically given by a functional
similar to (2) but with 8�a0 replaced with its Born ap-
proximation b0 �

R
V�r�d3r. Note that b0 > 8�a0. This

indicates that the excess energy originating from the emer-
gence of the scattering length is dispersed into modes that
do not influence the evolution of the condensate. Hence,
for product initial data, the scattering length emerges dy-
namically, and the energy functional of the single particle
orbitals does not predict the evolution equation.

Outline of the proof.—For k � 1; . . . ; N, let ��k�N;t denote
the k-particle marginal density of  N;t with a consistent
normalization Tr��k�N;t � 1. The time evolution is governed
by a hierarchy of N coupled equations, commonly known
as the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy
 

i@t�
�k�
N;t �

Xk
j�1

���rj ; �
�k�
N;t� �

Xk
i<j

�VN�ri � rj�; �
�k�
N;t�

� �N � k�
Xk
j�1

Trk�1�VN�rj � rk�1�; �
�k�1�
N;t �; (8)

where Trk�1 denotes the partial trace over rk�1. By the
Banach-Alaouglu theorem, ��k�N;t has at least one weak*

limit point ��k�1;t in the space of trace class operators.
Since formally NVN�r� � N3V�Nr� ! b0��r�, one may
naively expect from (8) the time evolution of ��k�1;t to be
described by the infinite hierarchy

 i@t�
�k�
1;t �

Xk
j�1

���rj ; �
�k�
1;t� � �B�k��

�k�1�
1;t ; (9)
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with the collision operator

 B�k���k�1� �
Xk
j�1

Trk�1���rj � rk�1�; ��k�1��;

and with � � b0. However, the coupling constant in the
correct equations for ��k�1;t is � � 8�a0. The reason is that
��k�1�
N;t develops a short-scale structure which lives on the

same length scale ‘ ’ 1=N as the potential VN . Since
��k�1�
N;t is not constant on this length scale, one cannot apply

the formal limit NVN ! b0� in (8).
In the following theorem 2, we show that, for rj close to

rk�1, the short-scale structure of ��k�1�
N;t is described by the

function fN�rj � rk�1�, where fN is the solution to the zero
energy scattering equation ���� 1

2VN�r��fN�r� � 0, with
boundary condition fN�r� ! 1 as jrj ! 1. By scaling,
fN�r� � f�Nr�, where f is a solution of ���� 1

2V�f �
0 with the same boundary condition. Therefore, the correct
value of � in (9) is given by

 � �
Z
d3rNVN�r�fN�r� �

Z
d3rV�r�f�r� � 8�a0:

Note that the short-scale structure disappears from ��k�1;t
after taking the weak limit, but it still affects the limiting
macroscopic dynamics.

The infinite hierarchy (9) has a factorized solution: The
family ��k�1;t � j’tih’tj	k, k 
 1, is a solution to (9) with
� � 8�a0 if and only if ’t is a solution to the GP equa-
tion (1). Therefore, to identify the limiting density, it
suffices to show that (i) any limit point f��k�1;tgk
1 of the
family of densities f��k�N;tg

N
k�1 is a solution of the infinite

hierarchy (9) with � � 8�a0, and (ii) the solution to the
infinite hierarchy is unique. The proofs of (i) and (ii) rely
on estimates on the energy distribution of the initial wave
function and on the factorization property (7).

(i) Convergence to the infinite hierarchy.—The follow-
ing key theorem identifies the short-scale structure assum-
ing a bound on the second moment of the energy. This is
the main ingredient in the proof of (9).

Theorem 2.—Suppose � is small enough. Then there
exists a constant C> 0 such that, for 1 � i < j � N,

 h ;H2
N i 
 CN2

Z
dR

��������rrirrj

 �R�
fN�ri � rj�

��������
2

(10)

holds for any  2 L2�R3N; dR� that is symmetric with
respect to permutations. Here R � �r1; . . . ; rN� 2 R3N .

From this theorem, we obtain the a priori bound

 

Z
dR

��������rrirrj

 N;t�R�
fN�ri � rj�

��������
2
� C; 8 i � j; (11)

uniformly in N and t provided the initial wave function
 N;0 at time t � 0 satisfies h N;0; H2

N N;0i � CN2. Note
that

R
dridrjjrrirrjfN�ri � rj�j2 � N; thus, (11) identi-

fies the short-scale structure of  N;t with a precision 1=N.
Furthermore, since the left side of (10) is a constant of

motion, (11) shows that the separation between the singu-

lar short-scale structure and the regular part of  N;t is
preserved by the time evolution.

Outline of the proof of theorem 2.—We define hm �
��rm �

1
2

P
n�mVN�rn � rm�, for m � 1; . . . ; N. Then

HN �
PN
m�1 hm, and, using the permutation symmetry of

 and V 
 0, we obtain, for arbitrary i � j,
 

h ;H2
N i

N�N � 1�

 h ; hihj i




�
 ;
�
��ri �

VN�ri � rj�
2

�

�

�
��rj �

VN�rj � ri�
2

�
 
�
:

From the definition of fN�r�, we find

 

�
��ri �

1

2
VN�ri � rj�

�
 � fN�ri � rj�Li

 
fN�ri � rj�

;

with Li � ��ri � 2rri�logfN�ri � rj��rri . Using inte-
gration by parts, and with �ij�R� �  �R�=fN�ri � rj�,
 

h ;H2
N i

N�N � 1�


Z
dRf2

N�ri � rj�jrrirrj�ij�R�j2

�
Z
dR�f2

Nr
2 logfN��ri � rj�

� rri
��ij�R�rrj�ij�R�:

Equation (10) now follows because jr2 logfN�ri �
rj�j � C�jri � rjj�2, and, therefore, the second term on
the right-hand side of the last equation can be controlled by
the first one (for � small enough) using the operator
inequality jrj�2 � �C�r (Hardy inequality).

(ii) Uniqueness of the infinite hierarchy.—The first step
is to prove a priori bounds in a certain Sobolev norm.

Theorem 3.—Let ��k�1;t be any weak limit point of ��k�N;t;
then the following estimate holds uniformly in time:

 jjj��k�1;tjjjk :� Tr�1� �r1
� . . . �1� �rk��

�k�
1;t � Ck: (12)

Idea of the proof.—By conservation of Hk
N along the

evolution, TrHk
N�
�k�
N;t � TrHk

N�
�k�
N;0. A control on TrHk

N�
�k�
N;0

can be obtained through (7). The difficulty is that the norm
jjj 
 jjjk cannot be directly controlled by TrHk

N�
� and, in
fact, jjj��k�N;tjjjk ! 1 as N ! 1 because of the singular
short-scale structure. It is only after taking the weak limit
N ! 1 that the short-scale structure disappears and (12)
can be proven.

For illustration, consider the case k � 2 discussed in
theorem 2. The estimate (11) implies that  N;t�R� �
fN�ri � rj��t�R�, where �t is a smooth function in the
variable ri � rj. Together with the fact thatR
dridrjjrrirrjfN�ri � rj�j2 � N, we have thatR
dRjrrirrj N�R�j

2 ! 1 as N ! 1. However, since
fN ! 1 weakly in the L2 sense (but not in the energy
sense), a Sobolev estimate on the limit of the density
matrix of  N;t can be deduced from (11).
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Theorem 4.—Given a family of densities � � f��k�gk
1

such that jjj��k�jjjk � Ck, there exists at most one solution
�t � f�

�k�
t gk
1 to (9) with �t�0 � � and such that

jjj��k�t jjjk � Ck holds uniformly in t.
Outline of the proof.—Iterating the integral form of (9),

we obtain a Dyson series

 ��k�t �U�k��t���k� �
Xn�1

m�1

!�k�m;t � �
�k�
n;t ; (13)

where U�k�
t ��k� � eit

P
k
j�1

�j��k�e�it
P

k
j�1

�j , and

 !�k�m;t � ��i��m
Z t

0
ds1 . . .

Z sm�1

0
dsmU

�k�
t�s1

B�k� . . .

� B�k�m�1�U�k�m�
sm ��k�m�: (14)

The error term ��k�n;t has the same form as !�k�n;t with
U�k�n�

sn ��k�n� replaced by the full evolution ��k�n�sn .
To prove the convergence of the expansion (13) as n!

1, we expand each term into a sum of contributions
associated with certain Feynman graphs. A typical graph
� contributing to !�k�m;t is drawn in Fig. 1. It has m four-
valent vertices and 2k� 3m lines. The external lines on the
left (called roots) correspond to the 2k momenta variables
of the operator kernel of !�k�m;t. The 2�k�m� external lines
on the right (called leaves) represent the kernel of ��k�m�.
The graphical structure of � encodes the collision history
given in (14). Every line e of � carries a regularized free
propagator ��e � p2

e � i=t�
�1, with a momentum variable

pe 2 R3 and a frequency �e 2 R. At each vertex, there is
a p- and a �-delta function due to momentum and energy
conservation. The kernel of !�k�m;t (whose variables corre-
spond to the 2k momenta of the roots) is computed by
performing 3m momentum integrals and 2k� 3m fre-
quency integrals in each �.

Because of the singularity of the interaction at r � 0,
each graph is potentially ultraviolet divergent. Power
counting suggests, however, that the integrals are finite.
Suppose we cut off all momentum integrals at jpj ’ 	� 1
and all frequency integrals at j�j ’ 	2; then the integration
volume scales as 	3�3m��2�2k�3m� � 	4k�15m. The m mo-
mentum and frequency delta functions scale as 	�5m, and
the 2k� 3m propagators scale as 	�2�2k�3m�. The a priori
estimate (12) shows that ��k�m� & 	�5�k�m�. Since 4k�
15m< 5m� 2�2k� 3m� � 5�k�m�, the integrals
should be convergent in the ultraviolet regime 	� 1. To
make this argument rigorous, we use an integration
scheme, dictated by the structure of the graph. We start
by integrating the momenta and frequencies of the leaves;
these integrals are convergent because of the a priori esti-
mates (12), and they also provide a momentum decay on
the lines adjacent to the leaves. We then iterate this proce-
dure, integrating all momenta and frequencies by moving
from the right to the left of the graph and transferring a
suitable momentum decay.

Conclusion.—We have proven that Bose-Einstein con-
densates evolve according to the Gross-Pitaevskii equa-
tion. This provides a mathematical description of recent
experiments on the evolution of initially trapped conden-
sates. On the theoretical level, it is surprising that the GP
equation is correct even if the initial state is uncorrelated
(product). Our result thus suggests that the many-body
dynamics builds up correlations on the length scale ‘ ’
1=N in a very short time. Since the emergence of correla-
tions reduces the local energy, one may ask what happens
with the excess energy. Although we are not able to give a
mathematically rigorous answer, we believe that the excess
energy is transferred to incoherent excitations living on
intermediate length scales ‘, with N�1 � ‘� 1. Since
the macroscopic dynamics described by the GP equation is
affected only by the structure of the wave function on
length scales of O�1� and O�1=N�, these mesoscopic ex-
citations have no influence on the evolution of the
condensate.
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=

FIG. 1. Diagrammatic expansion for!�k�m;t as a sum of Feynman
graphs with m vertices, 2�k�m� leaves, and 2k roots.
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