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Coherence properties of Bose-Einstein condensates offer the potential for improved interferometric
phase contrast. However, decoherence effects due to the mean-field interaction shorten the coherence
time, thus limiting potential sensitivity. In this work, we demonstrate increased coherence times with
number squeezed states in an optical lattice using the decay of Bloch oscillations to probe the coherence
time. We extend coherence times by a factor of 2 over those expected with coherent state Bose-Einstein
condensate interferometry. We observe quantitative agreement with theory both for the degree of initial
number squeezing as well as for prolonged coherence times.
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Experimental requirements for precision atom interfer-
ometry are well suited to many of the coherence properties
of Bose-Einstein condensates (BECs) [1–5]. BECs possess
narrower momentum distributions than those of ultracold
atomic gases, which removes the need for velocity selec-
tion during initial state preparation. The longer coherence
length of a condensate improves phase contrast, and colder
temperatures reduce ensemble expansion during long in-
terferometer interrogation times. Furthermore, for confined
atom interferometers [6–8] which require spatial separa-
tion of a wave packet in close proximity to a guiding
surface, the superfluid properties of a BEC offer an addi-
tional advantage. The mean-field interaction energy in
BECs provides an energy gap to external excitations, ef-
fectively decoupling the atomic proof mass from the physi-
cal sensor.

On the other hand, the coherence time for BEC inter-
ferometry can be significantly reduced with respect to cold
atom sources. Prior to separation, two linked condensates
have relative number fluctuations which support a well-
defined relative phase. However, when separated, the inter-
play of a large on-site mean-field interaction with a large
number variance causes rapid dephasing [9]. This concern
has been addressed previously by using either dilute con-
densates [10] or, alternatively, Fermi gases which do not
suffer from density broadening mechanisms [11]. It is
possible, however, to retain some of the benefits of BEC
interferometry while minimizing mean-field induced deco-
herence. The generation of atom-number squeezed states
from a BEC in an optical lattice [12,13] has offered the
possibility to create states with reduced sensitivity to
mean-field decay mechanisms.

In this work, we study the characteristic time scale for
which an array of BECs preserves relative phase informa-
tion after becoming fragmented, and we observe prolonged
coherence times for number squeezed states. The coher-
ence time is probed through the decay time of a Bloch
oscillation, and we find quantitative agreement with theo-
retical predictions.

The theoretical treatment for a BEC in an optical lattice
begins with the Bose-Hubbard Hamiltonian [14].
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âyi âj �
X
i

"iN̂i � �g=2�
X
i

�iâ
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i âiâi; (1)

where g� represents the mean-field interaction energy and
� is the interwell tunneling matrix element with both terms
dependent on lattice depth. "i denotes the external poten-
tial term, and âi and âyi represent single particle annihila-
tion and creation operators, respectively, at the ith lattice
site.Ni denotes the local atom number which is replaced by
the central well occupation N in the discussion below.

In the regime of low lattice potential and correspond-
ingly large tunneling (N�� g�), the many body ground
state of the system is described by a superfluid state with
local atom-number uncertainty ��N� �

����
N
p

. As the poten-
tial barrier is adiabatically raised, the interplay of the
interaction and tunneling terms renders number fluctua-
tions energetically unfavorable. In the Bogoliubov limit,
number fluctuations decrease with increasing lattice poten-
tial as �S�N� � �N2=�1� Ng�=���1=4 [15], with com-
mensurately increasing on-site phase fluctuations. In the
limit of N�	 g�, the system enters the Mott-insulating
regime, where the wave function at each site approximates
an atom-number Fock state [13].

We fragment this array by frustrating tunneling between
adjacent lattice sites. In previous work, this has been
achieved by diabatically raising a large potential barrier
[12,16]. In this work, we frustrate tunneling by applying a
large energy gradient across the array. This method is
preferred since the on-site mean-field energy [the third
term on the right of Eq. (1)] is unaffected by this process.
This sudden localization is analogous to a beam splitter
which instantly separates an ensemble into two distinct
paths. The many body ground state does not have time to
react to the perturbation, and therefore an array of inde-
pendent, localized many-atom states is formed. The initial
array state is no longer in the ground state, and the array
phase collapses.
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Relative phase dispersion between adjacent wells is
intuitively understood by considering an array initially
prepared in a shallow lattice potential. After fragmen-
tation, each coherent state j�i can be expanded as a
superposition of atom-number Fock states j�i �P
n��

ne��1=2�j�j2=
�����
n!
p
�jni, where the phase of each term

in the superposition evolves as �n;i � ��n; "i�t=@ and
u � ng�� "i is the local chemical potential. Each num-
ber term in the superposition evolves at a different rate,
leading to relative phase dispersion with a characteristic
decay time �c. For coherent states, the decay is seen in
the time dependence of the expectation value of the
order parameter jhâij �

����
N
p

e�N�g��
2t2=2, where �coh �

�
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N
p

g���1 [9]. This coherence time can be prolonged by
reducing the number of terms in the initial atom-number
state superposition. For squeezed states with reduced num-
ber uncertainty �S�N�, the coherence time increases as
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We measure �c for different initial number variances by
studying the decay of coherent Bloch oscillations [17–19].
An energy gradient "i � Ei is applied to the array, where E
is written in units of energy. This drives an oscillatory
response in the quasimomentum q of the atomic Bloch
state with a period T � @=2�E. Although Bloch oscilla-
tions are traditionally observed for conditions where the
array is described by bands delocalized spatially over many
lattice sites, they also occur for spatially localized wave
functions described in the Wannier-Stark basis [20]. We
isolate the sites when E� � but ensure that E is not too
large as to cause particle loss through Zener tunneling [2].
Bloch oscillations are observed by interferometrically fol-
lowing the evolution of the relative phase between adjacent
wells �� � q	=2, where 	=2 is the lattice period. This
linear relation between quasimomentum q and relative
phase �� extends to their respective uncertainties (�q /
���). Thus, dispersion in momentum space, which is
measured by interference peak width, provides a quantita-
tive indication of dephasing.

The experimental apparatus has been described in de-
tail [12]. We load 108 87Rb atoms into a time-orbiting
potential trap. Evaporative cooling generates a BEC in
the jF � 2; mF � 2i state with 1500 atoms, density 


1012 cm�3, and temperature 
0:2Tc. The atom number is
determined with absorptive imaging with 20% shot-to-shot
fluctuations and consistent with the observed condensate
fraction as a function of temperature.

We trap the condensate in a 1D, vertically oriented
optical lattice. The lattice light is red detuned from the
87Rb resonance and has 1=e radii of 60 �m. The potential
depth U (measured in ER, where ER � @

2k2=2m and k �
2�=	, with 	 � 852 nm) is calibrated using three inde-
pendent methods which all agree to within 10%. We first
measure U by driving an even parity parametric excitation
from the lowest energy band [21]. We also measure the

period of Kapitza-Dirac diffraction by suddenly turning on
the optical lattice [22]. Finally, we measure the frequency
of Josephson tunneling, which is valid for low lattice
depths U < 12ER [23]. For lattice depths explored in this
work (5<U < 24ER), we calculate 2�� 4<�=@<
2�� 250 Hz and 2�� 0:6< g�=@< 2�� 1:8 Hz,
103<N < 150, and the vertical 1=e condensate array
radius ranges between 7–10 lattice sites.

After state preparation in the optical lattice [Fig. 1(a)],
we drive a Bloch oscillation by applying a magnetic field
gradient along the array axis. We probe the coherence of
the Bloch oscillation by releasing the array, rapidly switch-
ing off the lattice within 500 ns. The interferometric signal
is absorptively imaged with single atom detection sensi-
tivity. Figure 1(b) shows images depicting a Bloch oscil-
lation with T � 1:1 ms, taken with U � 10ER and
E=@ � 2�� 900 Hz.

We ensure that adjacent sites are decoupled during TBloch

by varying E and measuring the width of the central
interference peak. An increased width indicates dephasing
of the Bloch oscillation. We apply the field gradient for

 

FIG. 1 (color). (a) Lattice intensity is shown for the experi-
mental sequence. The lattice intensity is ramped up in Tramp �

350 ms and then held constant for TBloch during which time a
magnetic field gradient is applied. The lattice and magnetic
fields are turned off, and the atoms ballistically expand for a
12 ms time of flight (TOF) before being imaged with a probe
pulse. (b) Absorptive images indicating a Bloch oscillation are
shown. (c) Peak width vs energy offset E is shown with widths
converted to units of 2@k. The insets show absorptive images
both with and without dephasing.
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40 ms before releasing the array. We see in Fig. 1(c) that for
small E the Bloch oscillation shows minimal dephasing.
However, for large energy offsets the peak width increases,
saturating at our resolution limit for �
 E, where �=@ �
2�� 39 Hz for U � 12ER.

We next quantify the degree of number squeezing gen-
erated at a given lattice depth. We adiabatically increase
the lattice intensity and interfere the array, generating an
interference pattern with sharp peaks on top of a broad
incoherent background. We extract this incoherent fraction
by fitting the signal to a function with three narrow
Gaussian peaks and a fourth broad peak. For very low
lattice depths, the incoherent background is within our
noise floor. The observed incoherent fraction shown in
Fig. 2(a) is a quantitative metric of number squeezing as
seen by comparison with two theoretical models. First, we
simulate the interference pattern from an array of Gaussian
BEC wave functions with �S�N� determined by our ex-
perimental conditions [12,15]. We extract the simulated
incoherent background (shown with a solid line) by using
the same fit function as used with our experimental data.
Second, we calculate the degree of quantum depletion [24],
the fraction of atoms not characterized by an order parame-
ter, expected at a given lattice depth. We equate this
depletion fraction with the incoherent fraction of an inter-
ference signal, shown with a dashed line. Note that our

observed quantum depletion is significantly higher than
that observed in Ref. [25] due to our densities which are
nearly 2 orders of magnitude lower.

With demonstrated control over number squeezing and
site localization, we explore the dependence of �c on initial
number variance. Using the experimental sequence in
Fig. 1(a), we take an absorptive image of the interfering
atoms for different lattice depths with E kept constant. We
fit the central vertical peak to a Gaussian to determine the
width as a function of TBloch. We measure �c by fitting the
data as in Fig. 2(b) to w�t� � wf � �wf � w0�e

��t=�c�2 [9].
wf is the maximum observed width representing a fully
dephased signature, and w0 is the peak width prior to any
phase dispersion.

Figure 2(c) shows the summary graph plotting �c vs
lattice depth, where increased lattice depth reflects in-
creased number squeezing. The theoretical �c for isolated
coherent states and number squeezed states Eq. (2) are
shown with dashed and solid lines, respectively. For very
low lattice depths, �c is longer than expected for either
coherent state or squeezed state dephasing. This is likely
due to insufficient isolation between wells when � is large.
However, we cannot significantly increase E at this lattice
depth without introducing Zener tunneling losses. For
intermediate lattice depths with near-Poissonian number
variance, we observe a good correlation of �c with that
expected for isolated coherent state condensates.

For deeper lattice depths, however, we measure long
coherence times which are in quantitative agreement with
theoretical number squeezed state dephasing. For number
squeezed states prepared at U � 22:5ER, �c �
19:3� 3:5 ms. This represents an increase of a factor of
2.1 over the expected decay time of an array of coherent
states in the same lattice potential. It is interesting to note
that here squeezing extends the coherence time; typically,
the enhanced fragility of squeezed states to loss mecha-
nisms results in reduced coherence times [26].

To eliminate other potential sources of dephasing, we
investigate the effects of finite temperature and the adia-
baticity of our lattice ramp on the interferometric peak
width observed in Bloch oscillations. We prepare conden-
sates at different temperatures by varying the final fre-
quency !RF of the evaporative cooling stage. As seen in
Fig. 3(a), we observe no change in peak width for 2��
1:40<!RF < 2�� 1:50 MHz withU � 16ER. However,
at !RF � 2�� 1:51 MHz we observe a sudden onset of
phase broadening. To avoid this thermal dephasing regime,
all data were taken with!RF � 2�� 1:44 MHz. Note that
this critical temperature in the lattice is different from the
BEC transition temperature in a bare harmonic trap (cor-
responding to !RF � 2�� 1:6 MHz).

In Fig. 3(b), we investigate the dependence of peak
width on lattice intensity ramp speed. A balance is required
to avoid losses due to lattice heating with very long ramp
times and nonadiabaticity effects with short ramp times.
We find that peak width is insensitive to ramp speed for
80< Tramp < 620 ms.

 

FIG. 2. (a) The fraction of atoms observed in the incoherent
background of the interference signature is plotted vs lattice
depth. This fraction from the simulated interference of an array
of Gaussian wave packets is shown with a solid line. The
calculated quantum depletion vs lattice depth is shown with a
dashed line. (b) Peak width is plotted vs TBloch for U � 10ER
and E=@ � 2�� 900 Hz. The solid line is a fit to data to extract
�c � 14:2� 1:3 ms. (c) �c is plotted vs lattice depth. The solid
(dashed) line denotes theoretical dephasing of number squeezed
(coherent) states.
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As a final consideration, we explore the possibility for
coherence restoration after complete dephasing. We use
the same experimental sequence as in Fig. 1(a), with U �
10ER and TBloch � 80 ms, ensuring that dephasing has
occurred. This time, however, after turning off the mag-
netic field gradient, we continue to hold the atoms in the
optical potential before interfering them. We see that phase
contrast returns nearly completely after 
10 ms as shown
in Fig. 4. While the details of this rephasing mechanism
require further investigation, a two-well model predicts
this time to be determined by the generalized Josephson

frequency!J � 2
��������������
Ng��
p

. Our observed rephasing time is
in agreement with this prediction [27].

In conclusion, we have demonstrated that number
squeezed states in an optical lattice can extend coherence
times, which is beneficial to certain interferometry appli-
cations. We recognize that for phase measurements which
depend linearly on time, such as Bloch oscillations ob-
served in this work, the advantage of the extended mea-
surement time t is commensurately offset by increased
phase noise (i.e., ��� / �c) where t is limited by �c.
However, for inertial measurements, where phase shifts
are proportional to t2, we expect future sensors to benefit
from extended coherence times [28].
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FIG. 4 (color). Peak width is plotted vs continued hold time in
lattice after removing the external field gradient Trephase. The
insets are absorptive images showing initial dephasing of the
phase contrast and subsequent revival.

 

FIG. 3. (a) Peak width vs !RF=2�. Tc � 1:6 MHz for a BEC
in the bare harmonic trap. (b) Peak width vs. Tramp.
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