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We report on precision measurements of the frequency of the radial compression mode in a strongly
interacting, optically trapped Fermi gas of 6Li atoms. Our results allow for a test of theoretical predictions
for the equation of state in the BEC-BCS crossover. We confirm recent quantum Monte Carlo results and
rule out simple mean-field BCS theory. Our results show the long-sought beyond-mean-field effects in the
strongly interacting Bose-Einstein condensation (BEC) regime.
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Ultracold, strongly interacting Fermi gases [1–13] have
attracted considerable attention over the past few years,
serving as unique model systems to create, control, and
investigate novel states of quantum matter. Experimentally,
the availability of such systems has opened up exciting
possibilities to study many-body quantum phenomena like
molecular Bose-Einstein condensation (BEC) [3] and the
crossover from BEC to a Bardeen-Cooper-Schrieffer
(BCS) type superfluid [4–13]. These experiments may
also lead to a better understanding of strongly interacting
quantum systems in different areas of physics, ranging
from high-Tc superconductors to neutron stars and the
quark-gluon plasma.

A degenerate two-component Fermi gas undergoes the
BEC-BCS crossover [14] when the s-wave scattering
length a is varied from positive to negative values across
a scattering resonance. In the crossover region, where a is
comparable with or larger than the interparticle spacing,
the equation of state is governed by many-body effects.
Understanding the equation of state is a fundamentally
important challenge and constitutes a difficult task for
many-body quantum theories, even in the zero-temperature
limit. Mean-field BCS theory [14] provides a reasonable
interpolation between the well-understood limits. More
sophisticated crossover approaches [15] yield quantita-
tively different results in certain regimes, none of them,
however, providing a complete description of the problem.
The most advanced theoretical results were obtained by
numerical calculations based on a quantum Monte Carlo
(QMC) approach [16].

On the BEC side of the crossover, there is an interesting
competition in the equation of state between the strong
interactions in a Bose gas and the onset of fermionic
behavior. For a strongly interacting Bose gas, one can
expect quantum depletion to increase the average energy
per particle. To lowest order, this beyond-mean-field effect
leads a correction to the equation of state predicted by Lee,
Huang, and Yang (LHY) almost 50 years ago [17]. Beyond
mean-field effects are expected to reduce the compressi-

bility of a strongly interacting Bose gas as compared to the
weakly interacting case. However, when approaching the
resonance, fermionic behavior emerges and the system
loses its purely bosonic character, which increases the
compressibility of the strongly interacting gas. Mean-field
BCS theory does not contain beyond-mean-field effects
and the LHY correction is absent there. However, the
QMC results predict beyond-mean-field effects to be vis-
ible on the BEC side of the crossover [16].

In this Letter, we report on precision measurements of
the radial compression mode in an optically trapped,
strongly interacting Fermi gas of 6Li atoms. The mode
serves as a sensitive probe for the compressibility and
thus the equation of state of a superfluid gas in the BEC-
BCS crossover [18,19]. We reach a precision level that
allows us to distinguish between the predictions resulting
from mean-field BCS theory and QMC calculations.
Previous experiments on collective modes, performed at
Duke University [8,11] and at Innsbruck University [9],
showed frequency changes in the BEC-BCS crossover in
both the slow axial mode and the fast radial compression
mode of a cigar-shaped sample. The accuracy, however,
was insufficient for a conclusive test of the different many-
body theories in the strongly interacting regime.

We prepare a strongly interacting, degenerate gas of 6Li
atoms in the lowest two internal states as described in our
previous publications [4,9,10]. The broad Feshbach reso-
nance centered at a magnetic field of B � 834 G facilitates
precise tuning of the scattering length a [20]. Forced
evaporative cooling is performed in a 1030-nm near-
infrared laser beam focussed to a waist of 54 �m at
764 G. This results in a deeply degenerate cloud of N �
2:0�5� � 105 atoms. By adiabatically increasing the trap
laser power after cooling, the sample is recompressed to
achieve nearly harmonic confinement. In the axial direc-
tion the gas is magnetically confined in the curvature of the
field used for Feshbach tuning with an axial trap frequency
of !z=2� � 22:4 Hz at 834 G. The experiments reported
here are performed at two different final values of the laser
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power of the recompressed trap. At 135 mW (540 mW), the
trap is 1:8 �K (7:3 �K) deep and the radial trap frequency
is !r � 2�� 290 Hz (590 Hz). The Fermi energy of a
noninteracting cloud is calculated to EF � @

2k2
F=2m �

@�3!2
r!zN�1=3 � kB � 500 nK (800 nK); here m is the

mass of an atom and kB is Boltzmann’s constant.
Since our first measurements on collective excitation

modes [9], we have upgraded our apparatus with a two-
dimensional acousto-optical deflection system for the trap-
ping beam and a new imaging system along the trapping
beam axis. These two improvements provide us with full
access to manipulate and observe the radial motion.

The trap beam profile is somewhat elliptic because of
imperfections and aberrations in the optical set up. To
simultaneously excite the two eigenmodes of the radial
sloshing motion, we initially displace the trapped sample
into a direction between the horizontal and vertical princi-
pal axes of the radial potential. After a variable hold time,
during which the cloud oscillates freely, we turn off the
optical trap. After a time of flight of typically 4 ms we take
an absorption image of the released cloud. The center-of-
mass position of the cloud then reflects its momentum at
the instant of release. The experimental results in Fig. 1
demonstrate the sloshing with a beat between the two
eigenmodes. A careful analysis of such data [21] allows
us to determine the eigenfrequencies !x (horizontal slosh-
ing) and !y (vertical sloshing) to within a relative uncer-
tainty of typically 2� 10�3. We finally derive the mean
sloshing frequency !? �

������������!x!y
p and the ellipticity pa-

rameter � � �!y �!x�=!?.
To excite the radial compression oscillation we reduce

the trap light power for a short time interval of �100 �s,
inducing an oscillation with a relative amplitude of typi-

cally 10%. After a variable hold time the cloud is released
from the trap. From fits of two-dimensional Thomas-Fermi
profiles to images of the expanding cloud taken 4 ms after
release, we determine the mean cloud radius. A typical set
of measurements is shown in Fig. 2. A fit of a damped
harmonic oscillation to such data yields the frequency !c
and damping rate � of the radial compression mode.

Our experiments are performed close to the limit of an
elongated harmonic trap potential with cylindrical symme-
try. This elementary case is of great general relevance for
many quantum gas experiments in optical and magnetic
traps (see, e.g., [22]), and collective excitations are con-
veniently normalized to the radial trap frequency !r
[18,19]. The compression mode frequency can then be
written as !c � fc!r, where fc is a dimensionless func-
tion of the interaction parameter 1=kFa and is related to an
effective polytropic index � [18,19] of the equation of state
by !2

c � 2��� 1�!2
r .

In order to compare our experimental results with the-
ory, we consider the quantity fc, i.e., the normalized com-
pression mode frequency of the ideal, cylindrically
symmetric, elongated trap. We find, that for our experi-
mental conditions, fc is approximated by the ratio !c=!?
of the measured compression mode (!c) and mean slosh-
ing mode (!?) frequencies to better than 1%. On the
desired accuracy level of 10�3, however, two small effects
have to be taken into account: the residual trap ellipticity
and the anharmonicity of the radial potential in combina-
tion with the spatial extension of the trapped sample. We
thus introduce two small corresponding corrections, ex-
pressing fc in the form fc � �1� ��

2 � b��!c=!?.
For the ellipticity correction ��2, a straightforward so-

lution of the hydrodynamic eigenfrequency equation [21]
yields � � �2� ��=4�, where � can be approximated by
� � �!c=!?�

2=2� 1. For the anharmonicity correction,
the parameter � � 1

2m!
2
?r

2
rms=U0 relates the potential

energy associated with the root-mean-square radius rrms

[23] of the trapped cloud to the trap depth. The coefficient
b results from the differential anharmonicity shifts in the
compression and sloshing modes and can be calculated
according to [21,24,25]. We obtain [21] b � 0:167 and
0.280 in the limits of BEC and unitarity, respectively. 

FIG. 1 (color online). Radial sloshing observed at a trap power
of 540 mW and B � 735 G (1=kFa � 1:55). The two-
dimensional center-of-mass motion is represented in a coordi-
nate system (x0, y0) rotated by 45	 with respect to the principal
axes of the trap. The beat signal between the two sloshing
eigenmodes demonstrates the ellipticity of the trap with the
two eigenfrequencies !x=2� � 570 Hz and !y=2� � 608 Hz
(ellipticity � � 0:066).

 

FIG. 2 (color online). Radial compression oscillation observed
for the same conditions as the sloshing mode data in Fig. 1. The
radial width is determined by averaging the horizontal and
vertical Thomas-Fermi radii after expansion. Here we obtain
!c=2� � 1185 Hz.
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Our measurements on the sloshing and compression
modes are summarized in Table I, including the two small
corrections. For the data in the strongly interacting BEC
regime (1=kFa * 1) we used the weaker trap with
!?=2� � 290 Hz to minimize unwanted heating by in-
elastic collisions. Closer to resonance (1=kFa & 1) inelas-
tic processes are strongly suppressed, but the increasing
cloud size introduces larger anharmonicity shifts. Here we
chose the deeper trap with!?=2� � 590 Hz. On the BCS
side of the resonance we observed increased damping as a
precursor of the breakdown of hydrodynamics [9,11]. We
thus restricted our measurements to magnetic fields below
850 G to ensure low damping rates (�=!? < 0:01) and
superfluid hydrodynamics.

At a given magnetic field, a set of measurements on the
sloshing and compression modes typically takes a few
hours. To minimize uncertainties from slow drifts and
day-to-day variations we always took the sloshing mode
reference measurement right before or after the compres-
sion mode data. By repeating measurements under identi-
cal settings we found a typical remaining fractional
uncertainty for the normalized compression mode frequen-
cies of 5� 10�3, which is about 2–3 times larger than the
fit errors of individual measurements.

In Fig. 3 we show our final results on the normalized
compression mode frequency in the BEC-BCS crossover.
The two theory curves [19] correspond to the equation of
state from mean-field BCS theory (lower curve) and the
one from quantum Monte Carlo calculations (upper curve).
Our data confirm the quantum Monte Carlo predictions and

rule out the mean-field BCS theory. In the strongly inter-
acting BEC regime (1=kFa * 1) our data are well above
the value of 2. This highlights the presence of the long-
sought beyond-mean-field effects [17] in collective modes
of a strongly interacting gas [18,26].

We finally address the question of how nonzero tem-
peratures influence the compression mode frequency. At
unitarity, a recent experiment [27] has found small fre-
quency upshifts with temperature. For a BEC, however,
theory [28] predicts temperature-induced down-shifts,
which compete with the up-shifts from beyond-mean-field
effects. We have performed a set of measurements on
temperature shifts in the strongly interacting BEC regime
(1=kFa � 0:94). Before exciting the collective oscillation,
the evaporatively cooled gas was kept in the recompressed
trap for a variable hold time of up to 1.5 s. During this time
residual heating by inelastic processes slowly increased the
temperature, which we observed as a substantial increase
of damping with time. The damping rate � thus serves us as
a very sensitive, but uncalibrated thermometer [8,27].
Figure 4, where we plot the normalized compression
mode frequency versus damping rate, clearly shows a
temperature-induced down-shift. We note that previous
measurements in the strongly interacting BEC regime
[9,11] were performed at relatively large damping rates

TABLE I. Experimental data on radial collective modes in the
BEC-BCS crossover. The data in the upper seven (lower eight)
rows refer to the sets of measurements taken in the shallower
(deeper) trap with U0 � 1:8 �K and EF � 500 nK (U0 �
7:3 �K and EF � 800 nK). The values in parentheses indicate
1� fit uncertainties of individual measurements. Note that a
systematic scaling uncertainty of �4% for 1=kFa results from
the uncertainty in the atom number N � 2:0�5� � 105.

Sloshing Compression Correction
B 1=kFa !?=2� � !c=2� �=!? ��2 b�
(G) (Hz) (Hz) (10�4)

727.8 2.21 292.7(5) 0.083(3) 596.3(6) 0.007(2) 48 20
735.1 1.96 298.6(5) 0.091(3) 602.8(8) 0.008(3) 60 26
742.5 1.75 294.5(5) 0.067(3) 593.2(7) 0.005(2) 33 28
749.8 1.55 296.3(4) 0.073(3) 599.0(7) 0.006(2) 38 28
760.9 1.27 296.0(4) 0.088(2) 592.3(7) 0.009(2) 58 24
771.9 1.03 293.6(7) 0.074(5) 586.2(8) 0.007(3) 41 27
834.1 0 287.5(7) 0.073(5) 519.4(9) 0.014(3) 55 94
757.2 1.07 605.0(9) 0.065(3) 1210.9(12) 0.010(2) 32 13
768.2 0.87 592.5(7) 0.069(2) 1186.6(12) 0.012(2) 36 16
775.6 0.75 590.2(4) 0.060(1) 1170.2(21) 0.007(4) 28 14
782.2 0.64 604.8(9) 0.061(3) 1187.1(16) 0.006(3) 29 16
801.3 0.38 586.8(7) 0.063(2) 1135.2(12) 0.010(2) 33 24
812.3 0.24 586.5(7) 0.058(2) 1106.9(16) 0.014(3) 30 33
834.1 0 596.3(9) 0.070(3) 1089.0(12) 0.010(2) 48 40
849.1 �0:14 583.2(7) 0.052(2) 1046.7(37) 0.007(2) 29 47

 

FIG. 3 (color online). Normalized compression mode fre-
quency fc versus interaction parameter 1=kFa. The experimental
data include the small corrections for trap ellipticity and anhar-
monicity and can thus be directly compared to theory in the limit
of an elongated harmonic trap with cylindrical symmetry. The
open and closed circles refer to the measurements listed in
Table I for !?=2� � 290 Hz and 590 Hz, respectively. The
error bars indicate the typical scatter of the data points. The filled
triangle shows a zero-temperature extrapolation of the measure-
ments displayed in Fig. 4. The theory curves refer to mean-field
BCS theory (lower curve) and QMC calculations (upper curve)
and correspond to the data presented in Ref. [19]. The horizontal
dashed lines indicate the values for the BEC limit (fc � 2) and
the unitarity limit (fc �

�����������
10=3

p
� 1:826).

PRL 98, 040401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 JANUARY 2007

040401-3



in the range between 0.05 and 0.1, where frequency down-
shifts are significant.

With our new knowledge on systematic frequency shifts
in collective mode measurements, let us comment on the
previous experiments performed in Innsbruck [9] and at
Duke University [8,11]. We have reanalyzed our old data
on the radial compression mode and identified a previously
undetermined ellipticity of � � 0:2 as the main problem in
our data interpretation [29]. The fact that we had normal-
ized the compression mode frequency to the vertical trap
frequency (!c=!y) led to a substantial down-shift in the
hydrodynamic regime, but not in the collisionless regime.
We furthermore believe that significant temperature shifts
were present in the previous collective mode experiments.
In particular for the strongly interacting BEC regime tem-
perature shifts in our old data on the axial mode [9] and the
Duke data on the radial mode [11] provide a plausible
explanation for these measurements being closer to the
predictions of mean-field BCS theory than to the more
advanced QMC results.

In conclusion, our work shows that collective modes
allow for precision tests of many-body theories in strongly
interacting quantum gases. In future experiments, the ob-
servation of collective oscillation modes will serve as a
powerful tool to investigate strongly interacting superfluids
in a more general context, e.g., in mixtures of fermionic
quantum gases.
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FIG. 4. Normalized compression mode frequency fc versus
damping rate for 1=kFa � 0:94 (U0 � 7:3 �K). The error bars
represent 1� fit uncertainties. The dashed lines indicate the zero-
temperature values predicted by QMC calculations (upper line)
and mean-field BCS theory (lower line).
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