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The dynamics of a loop in DNA molecules at the denaturation transition is studied by scaling arguments
and numerical simulations. The autocorrelation function of the state of complementary bases (either
closed or open) is calculated. The long-time decay of the autocorrelation function is expressed in terms of
the loop exponent c both for homopolymers and heteropolymers. This suggests an experimental method
for measuring the exponent c using florescence correlation spectroscopy.
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The thermodynamic properties of DNA near the thermal
denaturation transition have been extensively studied dur-
ing the last few decades [1,2]. At low temperatures a small
fraction of the base pairs are unbound, forming loops of
fluctuating lengths. These loops increase in size as the
temperature is raised, until the denaturation transition is
reached and the two strands separate. Recently, single
molecules techniques, most notably fluorescence correla-
tion spectroscopy (FCS) have been used to study dynami-
cal properties such as the temporal behavior of loops [3].

The main theoretical approach for studying DNA dena-
turation has been introduced by Poland and Scheraga (PS)
[4] and was used to analyze the case of homopolymers. It
was found that the dependence of the entropy of a loop on
its length plays a dominant role in determining the thermo-
dynamic behavior near the transition. On general grounds
one can argue that the entropy of a loop of length n takes
the form S � kB log���n��, where ��n� � sn=nc is the
number of loop configurations. Here s is a model-
dependent constant and c is a universal exponent whose
numerical value has been debated over the years and was
found to depend on the degree in which excluded volume
interactions are taken into account [4–6]. When excluded
volume interactions both within a loop and between the
loop and the rest of the chain are taken into account one
finds c ’ 2:12 [1,6]. This result, which predicts a first order
denaturation transition, has been verified numerically [7].
While numerical studies of the model with excluded vol-
ume interaction yield a clear first order transition [8], a
direct experimental measurement of c is rather difficult and
has not been carried out so far. Theoretical studies of the
case of a heteropolymers suggest that disorder makes the
transition of order higher than two [9,10].

In this Letter we analyze the loop dynamics at the
denaturation transition. The analysis suggests a method
for measuring the exponent c. We focus on predictions
for FCS studies [3]. In these experiments one monitors the
state of a base pair (whether it is open or closed) as a
function of time. The measured quantity is the base-pair
autocorrelation function Ci�t� � hui�0�ui�t�i, where
ui�t� � 1, 0 is a variable which indicates if base pair i is

open (1) or closed (0) at time t. By analyzing the loop
dynamics using a scaling approach and by direct modeling
we express the temporal behavior of the autocorrelation
function at the transition temperature in terms of the ex-
ponent c. So far, FCS studies have been restricted to short
molecules. Studies of the exponent c, require extending
these studies to longer molecules.

Previous analyses of the loop dynamics have concen-
trated mainly on the off critical region [11,12]. In these
analyses the loop is assumed to be in thermal equilibrium
throughout its evolution. As discussed below in detail, the
validity of this assumption is not obvious. In this work we
test this crucial assumption and demonstrate that it is valid
at the denaturation transition.

To proceed, we consider the dynamics of a single iso-
lated loop. In this approach one ignores processes like
merging of loops and the splitting of a large loop into
two or more smaller ones. This may be justified by the
fact that the cooperativity parameter, which controls the
statistical weight of opening a new loop, is estimated to be
small, �0 � 10�4 [7]. Thus splitting a loop into two is
unfavorable. Also, the average distance between loops,
which within the PS model is proportional to 1=�0, is
large, making the independent loop approximation plau-
sible. A loop may change its size by closing or opening of
base pairs at its two ends. It survives as long as its two ends
do not meet. Let G�n; t� be the survival probability of a
loop of initial length n for time t. The equilibrium auto-
correlation function, measured in FCS experiments, is
given by

 C�t� �

P
1
n�1 Peq�n�nG�n; t�P

1
n�1 Peq�n�n

; (1)

where for simplicity of notation we have dropped the site
index i. Here Peq�n� is the probability of having a loop of
length n in equilibrium. Hence, nPeq�n� is the probability
of a particular site to belong to a loop of length n. Note that
we assume that site i remains open as long as the loop
survives. This assumption does not affect the behavior of
the autocorrelation function in the scaling limit. An inter-
esting configuration is created when one end of the loop is
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forced to be on a particular site. In this case no n factor is
needed in Eq. (1) and the autocorrelation function for the
end of the loop reads

 CE�t� �
X1
n�1

Peq�n�G�n; t�: (2)

Experimentally, this autocorrelation function may be mea-
sured by studying a molecule which is clamped at one end
with a mismatch near this end. The autocorrelation func-
tion near the mismatch site yields CE�t�.

In the following we analyze both homogeneous and
heterogenous DNA. We show that in the homogeneous
case and at criticality the autocorrelation decays at large
t as C�t� � t1�c=2 for c > 2 while it remains finite, C�t� �
1, for c < 2. On the other hand we find CE�t� � t�1�c�=2 for
c > 1. Our analysis of heteropolymers suggests that the
disorder average of the autocorrelation function behaves as
�CE�t� � �lnt�2�2c for 1< c< 3=2 and as �CE � �logt��1

for c > 3=2. Here the overline denotes an average over
disorder.

Consider first the case of a homopolymer. In this case it
has been shown that Peq�n� � n�ce�n=�. The correlation
length � diverges at the transition yielding Peq�n� � n

�c.
To estimate the survival probability of a loop of length n
we consider the dynamics of a loop under the assumptions
discussed above, where loops are noninteracting and they
do not split into a number of smaller loops. Similar to
[11,12] we further assume that the loop is in a local thermal
equilibrium at any given time during its evolution. The
validity of this assumption will be discussed in detail
below. The loop free energy is thus given by f / n=��
c lnn where n is the loop size. Within the framework of the
Fokker-Planck equation, the probability distribution of
finding a loop of size n at time t, P�n; t�, is given by

 

dP�n; t�
dt

� D
@
@n

�
1

�
�
c
n
�

@
@n

�
P�n; t�; (3)

where D is the diffusion constant in base-pair units. Here
we have taken the continuum limit and assumed the dy-
namics to be overdamped. This equation has to be solved
with the boundary condition P�0; t� � 0 and initial condi-
tion P�n; 0� � ��n� n0�. The survival probability of the
loop is given by G�n0; t� �

R
1
0 dnP�n; t�. Using standard

techniques [13] it can be shown that at the transition
temperature (��1 � 0) the survival probability obeys the
scaling form G�n0; t� � g�Dt=nz0� with z � 2. The asymp-
totic behavior of the scaling function for small and large
values of the argument is

 g�x� � 1 for x� 1;

g�x� � x��1�c�=2 for x	 1:
(4)

Using these properties it is easy to calculate the longtime
behavior of the autocorrelation function [Eq. (1)]

 C�t� �
�

1 for c 
 2
t1�c=2 for c > 2

: (5)

Thus, the asymptotic behavior of C�t� could in principle be
used to measure the exponent c. In particular it can dis-
tinguish between the case of a continuous transition (c 

2), where C�t� � 1, and a first order phase transition (c >
2), where C�t� decays to zero. Similar analysis for the edge
autocorrelation function leads to CE�t� � t�1�c�=2 for c > 1.

A central assumption in the above analysis is that the
loop is at local equilibrium at any given time. A priori this
is not necessarily a valid assumption. The typical time for
the survival of a loop of length n scales as n2. On the other
hand the relaxation time of a loop configuration is also
expected to scale as n2 when hydrodynamic interactions
are ignored (to be discussed below). Thus it is not clear that
during the evolution of the loop it is in local equilibrium.
Away from the transition point the loop size changes
linearly in time and therefore the assumption of local
equilibrium is clearly not valid. In the following we in-
troduce a simple model for studying the loop dynamics
where hydrodynamic interactions are ignored. We find
strong evidence that the local equilibrium assumption
holds asymptotically even in this case.

To this end we introduce and analyze a simple model for
the loop dynamics. This dynamics is described by a fluc-
tuating interface interacting with an attractive substrate in
d � 1� 1 dimensions. Here the interface height variable
corresponds to the distance between complementary bases.
The interface configurations are those of a restricted solid
on solid (RSOS) model defined as follows (see Fig. 1): Let
hi � 0; 1; 2 . . . be the height of the interface at site i. The
heights satisfy jhi � hi�1j � �1 and hi � 0. Consider a
loop between sites 0 and n (where n is even) as shown in
Fig. 1. Outside the loop the interface is bound to the
substrate so that h�2k � hn�2k � 0 for k � 0; 1; . . . while
for 0 
 k 
 n the height hi can take any value which is
consistent with the RSOS conditions and is non-negative.
We consider a random sequential dynamics in which the
loop is free to fluctuate and one of its ends (n � 0) is free to
move with the following rules: for sites 2 
 i 
 n� 1
heights are updated as

 hi ! hi � 2 (6)

with rate 1 as long as hi � 0 and the RSOS condition is
satisfied. For i � n the loop length is changed according to
the following rules

 

  0    n   

FIG. 1. A typical microscopic configuration of the loop in the
RSOS model. Dashed lines indicate possible dynamical moves.
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 n! n� 2 with rate ��=4

n! n� 2 with rate ��;
(7)

where n can decrease only if hn�2 � 0.
In principle one should let both ends fluctuate. However,

for simplicity, we consider the case where one of the ends
is fixed. This should not modify any of our results, since the
dynamics of the two ends of long loops are uncorrelated
with each other. It is straightforward to verify that the
number of configurations of a loop of size n is given by
2n=nc with c � 3=2 for large n. Thus this model corre-
sponds to a particular value of c. We expect similar results
to hold for other values of c, as suggested by Eq. (3), which
yields z � 2 independent of the value of c. The ratio
between the two length changing processes is chosen
such that in the large n limit the loop is not biased to either
increase or decrease. This corresponds to the model being
at the denaturation transition point, which is determined by
equating the free energies of the pinned segment and that
of the open loop. Combining this with detailed balance
yields the ratio between the rates. The parameter �� deter-
mines the rate of the length changing processes: �� � 0
corresponds to the dynamics of a loop of fixed length and
as �� is increased the length changing processes become
faster. In a realization of this dynamics at any given step
one of n possible moves is chosen. Of these, n� 2 moves
correspond to an attempted update of the height at sites
2; 3; . . . ; n� 1. The other two moves correspond to an
attempt to update the edge by a move either to the right
or to the left. One attempted move of the edge defines a
Monte Carlo sweep. On average this amounts to updating
all sites every two sweeps. The numerical studies described
below are done using �� � 1.

To test the validity of the Fokker-Planck equation (3) for
describing the dynamics of a loop we simulated the dy-
namics of the model and calculated the survival probability
of a loop of initial length n0. To this end an initial configu-
ration of a loop of fixed length n0 is generated with the
correct equilibrium weight. Starting from this initial con-
figuration the dynamics is carried out. The results are
summarized in Fig. 2 where the survival probability is
plotted as a function of the scaling variable t=nz0 for several
values of the loop size n0. A very good agreement with the
predicted survival time obtained from the solution of the
Fokker-Planck equation (3) is found. However the optimal
data collapse takes place at z � 2:2 rather than z � 2. If
this value of z remains valid in the limit of large n it would
imply that the local equilibrium assumption is not valid.

In the following we argue that the value z � 2:2 is due to
finite size effects and we expect that for large systems the
value z � 2 is recovered. To this end we calculate numeri-
cally the variance of the loop size

 w2�t� � h�n�t� � hn�t�i�2i; (8)

where h
i denotes an average over realizations of the
dynamics. We show that asymptotically it grows linearly

with time. This result indicates that the dynamical expo-
nent is in fact z � 2 and that the deviations we observe for
small n0 are due to finite size effects. We proceed by
defining a variable ���t� which takes the value 1 if the
length of the loop increases at time t and 0 otherwise.
Similarly, we define ���t� and �0�t� for steps which
decrease the loop size and steps in which the loop size
does not change, respectively. Clearly ���t� � ���t� �
�0�t� � 1. The dynamics of the chain (7), implies that in
the limit of large n0 one has

 h���t�i � h���t�i � �=8; h�0�t�i � 1� �=4; (9)

where � � ��=maxf1; ��g in accordance with the random
sequential dynamics. DenotingU�t� � ���t� � ���t�, it is
easy to see that

 

�w2�t�
�t

� w2�t� � w2�t� 1�

� 4hU�t�2i � 8
Xt�1

��1

hU���U�t�i; (10)

where

 hU���U�t�i � h��������t�i � h��������t�i

� h��������t�i � h��������t�i: (11)

It is evident that a loop increasing step at time t,
(���t� � 1), is uncorrelated with steps which took place
at time � < t. Thus h��������t�i � h��������t�i �
�2=64. Numerically we find h��������t�i � �2=64 (see
Fig. 3). Using these result we finally obtain

 

�w2�t�
�t

� �� 8
Xt�1

��1

�h��������t�ic�; (12)

with h��������t�ic � h��������t�i �
�2

64 . Numerical
simulations of the dynamics show strong correlation be-
tween ����� and ���t� with an algebraic decay in t� �
(see Fig. 3). It is interesting to note that the dynamics of the

 

FIG. 2. Data collapse of the survival probability (averaged
over 4� 104 realizations) for some values of n0 with z � 2:2.
The line corresponds to a numerical solution of Eq. (3).
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chain induces such long range temporal correlations me-
diated by the loop dynamics.

By extrapolating the sum on the right-hand side of
Eq. (12) using the asymptotic form At�� with A � 0:015
and � � 1:2, deduced from Fig. 3, we find that the sum
converges to a value � 0:84<� � 1, indicating that
w2�t� � 0:16t at large t, which in turn yields z � 2. The
slow power-law convergence towards the asymptotic value
implies that it may require large systems to observe the
longtime behavior of (5).

We now turn to the heteropolymer case. To avoid the
typical denominator problem in disordered systems we
only consider the autocorrelation function CE�t� and study
its disorder average. For a heteropolymer the binding
energy of the ith base pair, ��i�, (and therefore also the
length changing rate ��i) are taken to be uncorrelated
quenched random variables. As the edge moves m steps
the binding energy changes by ��m� �

Pm
i�1 ��i�. The rate

��i is simply related to the binding energy ��i�, similar to
the dynamics of DNA unzipping [14]. Since the variance of
��m� grows linearly with m we can safely neglect the
effect of logarithmic correction to the loop entropy on
the dynamics. At the transition point the dynamics of the
loop length corresponds to that of an unbiased walker on a
random forcing energy landscape. It is known that the
probability of a walker (representing the edge of the
loop) not to return to the origin on such a disordered energy
landscape, Gd�n; t�, has the scaling form Gd�n; t� �
gd��logt�2=n0� [15]. The asymptotic behavior of the scaling
function for small and large values of the argument is

 gd�x� 1� � 1; gd�x	 1� � x��1=2�: (13)

This result is universal and independent of the potential
realization. Note that in this case there is a separation of
time scales where the typical survival time of the loop is
much longer than the loop relaxation time. Thus the use of
local equilibrium dynamics is clearly justified.

To complete this analysis one has to evaluate the equi-
librium loop size distribution. Extensive numerical studies
suggest that the disorder average loop statistics remain of

the same form with the same exponent c as in the case of
homopolymers [7,16].

Combining this with the universal form of the survival
probability we finally reach the asymptotic form of the
disordered average autocorrelation function:

 

�CE�t� �
�
�logt�2�2c for 1< c 
 3=2
�logt��1 for > 3=2

: (14)

We conclude with a comment on hydrodynamic inter-
actions. In the present study these interactions have not
been included. It is well known that the typical relaxation
time � in solutions is shorter when hydrodynamic inter-
actions are taken into account. Experiments on single
stranded DNA indicate a scaling with the polymer length
of �� n3=2, as compared with the Zimm model which
yields �� n3� with � � 0:6 [17].
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FIG. 3. Correlation functions of the � variables as obtained by
averaging over 1:9� 105 realizations.
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