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Pl. E. Bataillon, F-34095 Montpellier Cedex 05, France
(Received 11 December 2005; published 17 January 2007)

We present a two-step homogenization method for composite metamaterials. First, each layer of wires
or resonators is homogenized as a slab with negative permittivity or permeability, respectively. Second,
the single negative stack which results is homogenized to form the effective medium. Comparing the
predictions of the first and second step can serve as a gauge of the homogeneity of the composite. We thus
take a gradual approach to homogenization, asking not whether, but to what extent a composite
metamaterial approaches the sought after effective medium. Our two-step approach can also capture
phenomena which otherwise may be wrongly attributed to effective medium behavior. We illustrate by
qualitatively reproducing and reinterpreting a set of experimental data from the literature.
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Metamaterials with a possibly negative index of refrac-
tion have been under intense study since the results of
Pendry [1,2] suggested that they might be fabricated by
interspersing effective negative permittivity media (thin
metal wires or electric resonators) with effective negative
permeability media (magnetic resonators such as split rings
or high dielectric fibers). Negative permittivity and nega-
tive permeability can be obtained separately, but the way in
which they mix in order to obtain a negative-index medium
is less well understood. Attempts to model the composites
have been primarily based on black-box experimental or
numerical reverse engineering methods [3] which provide
only limited information about the physics of the structure.

Our aim in this Letter is to put forward and illustrate a
bottom up, constructive approach to understanding
negative-index composites. It basically consists of treating
the material as a stack of single negative parameter mono-
layers (Fig. 1). There are some compelling arguments for
conceiving of negative-index composites this way.

First, is the pragmatic argument. The majority of experi-
mental and numerical work available in the literature has
concentrated on periodic structures built by alternating
monolayers of wires and monolayers of resonators in
different configurations (e.g., Fig. 1 of Ref. [4]). Thus
experimental data is already widely available.

Second, there is the theoretical work of Pokrovsky and
Efros [5] and Marques and Smith [6] which has shown that
the negative epsilon property of metallic gratings is fragile
with respect to the brutal mixing of the wires with other
objects. The negative permittivity of thin wire structures is
essentially an interference phenomenon and anything that
perturbs the interference of waves scattered by neighboring
wires is liable to destroy it. Resonators should therefore not
be placed between wires, as much as possible, which
immediately leads to the idea of stacking them monolayer
by monolayer. This conclusion is supported by more recent
work [7,8] which has shown that near field coupling be-
tween wires and resonators is detrimental to negative-index
phenomena. Placing resonators at nodes of the magnetic

field of the wire structure, halfway between successive
wire rows [8], is a way to minimize inductive coupling,
which leads us again to the idea of the alternating mono-
layers. Also supporting our approach is the classical result
that in a periodic 3D network of dipoles (atoms in the
classical Clausius-Mosotti model) over 92% of the local
field seen by any particular dipole is due to other atoms in
the same plane [9].

The third and perhaps most compelling argument is that
by comparing the predictions of the partial homogenization
with the full homogenization we can distinguish in a
simple way phenomena which are truly due to effective
medium behavior from other features (transmission peaks)
which are due to non effective medium behavior. It gives us
important information regarding how large a wavelength to

 

FIG. 1. First each monolayer making up the composite is
homogenized giving a 1D stack composed of two anisotropic
layers, each characterized by a permittivity and a permeability
tensor. Second, the 1D stack is homogenized to give the effective
medium. The three media are referred to below as (a) ‘‘the com-
posite’’ (the 3D structure), (b) ‘‘the 1D stack’’, and (c) ‘‘the
effective medium’’.
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period ratio is required for effective medium operation. In
effect, the intermediate 1D medium serves as an upper
bound, in a sense, on the ‘‘homogeneity’’ of the composite
and can therefore be used to gauge the validity of the
effective medium model. We illustrate by qualitatively
reproducing experimental results available in the litera-
ture and using it to reinterpret those results. We now
discuss the meta-"atoms’’ available and their layerwise
homogenization.

There have been different proposals for resonating ele-
ments, from Pendry’s initial suggestions: the split rings and
the high dielectric fibers [1,10] to the more recent nanorods
[11], gold dots [12], or short wires [13]. For instance, high
dielectric rod media [14] have been shown rigorously to
exhibit magnetic activity of the form

 �eff�k0� � I � C
k2

0

�k2
p � k

2
0�
; (1)

where C and kp are constants related to the geometry of the
resonator and k0 the wave number in vacuum. The various
kinds of split ring resonators are now well understood as
well, see, for example, Sauviac et al. [15]. A 2D medium
composed of wires directed along x can be described by a
diagonal permittivity tensor with diagonal elements ("xx, 1,
1), where

 "xx � 1�
2��

k2
0 � k

2
x
; (2)

and � � 1=�d2 ln� d2�a��, where d is the period, a the wire
radius and kx the wave vector component along the x
direction [16].

It is important to note that even though effective medium
models such as those cited above concentrate on infinite
two dimensional media filled with either wires or resona-
tors, as the case may be, single rows of the respective
elements continue to exhibit the same effective medium
properties.

For the case of the wire medium, it has recently been
shown that a single thin wire grating can be homogenized
to a very good approximation as a negative permittivity
slab [17,18]. For the case of the magnetic resonating
medium, the analogous result can be verified numerically.
This is done in [14] for a 3 row dielectric structure, but
continues to hold for a single row. Because of the strong
localization of the field in the high dielectric rods, the
transfer matrix of a single grating is only weakly dependent
on the presence of the neighboring rows. In the case of
metallic resonators the layer parameters can be obtained by
treating it as a monolayer of point dipoles [9,19,20] char-
acterized by dispersive polarizabilities which can be ob-
tained analytically [15]. Stronger field localization can be
achieved by using designs with higher internal capacitance
such as the broadside-coupled resonators of Ref. [21]. The
benefits of weak evanescent coupling among neighboring
elements justify this design decision [7,8].

We can therefore perform the first step of the homoge-
nization procedure, by approximating the composite meta-
material with a single negative 1D stack. The remaining
step is now that of homogenizing this structure to obtain
the overall effective medium model.

The effective medium of a 1D stack of anisotropic
slabs can be obtained using a variety of well known meth-
ods such as the powerful two-scale expansion method [22].
We consider that each homogeneous slab is described by
two diagonal tensors "h � diag�"xx; "yy; "zz� and �h �

diag��xx;�yy; �zz� grouping a total of six y dependent
functions since the medium is invariant in x and z. The
effective medium parameters are given by

 "h � diag�h"xxi; h"�1
yy i
�1; h"zzi�; (3)

 �h � diag�h�xxi; h�
�1
yy i
�1; h�zzi�; (4)

where the brackets denote averaging over the period. It is
clear that the effective medium is very rich in possible
configurations and properties [23]. The unboundedness of
the harmonic mean (the y components) is a particularly
promising avenue for realizing media with exotic behav-
iors, and is also behind the resonant behavior of the Wiener
bounds [24].

We now concentrate on comparing the predictions of our
approach and the experimental data made available and
interpreted in Figs. 2 and 3 of Ref. [25]. In this work, the
metamaterial corresponds to the one represented in
Fig. 1(a). Following our analysis the metamaterial is re-
placed by the partially homogenized two-layers medium of
Fig. 1(b) and finally by the fully homogenized medium of
Fig. 1(c). The two layers of Fig. 1(b) are characterized by
parameters "1, �1 and "2, �2, where "1 � diag�"r; "r; 1�,
�1 � diag�1; 1; �eff�, and "2 � diag�"xx; 1; 1�, �2 � 1
and where �eff and "xx are given by Eqs. (1) and (2),
respectively. The effective medium of Fig. 1(c) is charac-
terized by parameters "h � "1�1 � "2�2 and �h �
�1�1 ��2�2, where �1 and �2 are the filling fractions,
0.8 and 0.2, respectively, as estimated from Ref. [25]. We
have assumed the resonators to be symmetrical in x and y
and that the permittivity "r is constant over the wave-
lengths under study. It is known that this permittivity is
only weakly dispersive [14,26]. In order to simulate the
wires with the closed resonators we can then simply set
�eff � 1 and to simulate the resonators alone, without the
wires, we set "xx � 1.

The incident field is polarized with the electric field
along the wires (x direction) and the magnetic field along
the resonators (z direction). The period we used was 5 mm
[25], and we plot transmission curves as a function of
frequency in GHz.

The form of the permeability was chosen to resonate
around 8.6 GHz as seen from the dash-dot curves, the
transmission of resonators alone. In the case of Fig. 2 the
plasma frequency of the wires plus closed resonators was
chosen to the left of the magnetic resonance, while in Fig. 3
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the plasma frequency is to the right. This can be seen from
the dashed curves, the transmission of wires and closed
resonators. The thick solid lines then give the transmission
for the partially homogenized structure [Fig. 1(b)] while
the thin solid lines give the transmission for the fully
homogenized structure [Fig. 1(c)].

The main feature one must notice in these two figures is
that in Fig. 2 the transmission peak around 8.9 s GHz is
predicted only by the partial (thick solid curve) but not the
fully homogenized (thin solid curve) model, while in
Fig. 3, both the partial and the fully homogenized model
show a transmission peak in that frequency range. This
indicates not only that the peak of Fig. 2 is not a left-
handed peak, it is a peak that is not an effective medium
feature at all. In fact the structure of Fig. 2 is not homo-
genized over the whole interval between 8 and 9.1 GHz.
Since the configuration of Fig. 2 reproduces the conditions
of Ref. [25] we are inclined to interpret their ‘‘right-handed
peak’’ rather as an inhomogeneous peak. A transmission
peak can therefore be obtained even when the average
permittivity and the average permeability of a structure
have different signs, as for the peak at 8.9 GHz. The high
transmission around 8 GHz is likewise inhomogeneous in
character as the mean permittivity is negative but the mean
permeability is positive. The situation is different in the
case of Fig. 3, even though the frequency and the period are
the same as in the first case. We can therefore confirm the
negative-index nature of the ‘‘left-handed peak’’ of
Ref. [25]. We should also note that the small nonhomoge-

neous peak at 8.5 GHz in Fig. 3, is also visible in the
experimental data of Fig. 3 of Ref. [25], at the same
frequency.

We have therefore shown that it is possible to reproduce
the experimental data using our simple 1D model.
Moreover homogeneous and nonhomogeneous features
coexist on the same figure, and our model can be used to
distinguish between them.

A better understanding of the physical character of the
transmission peaks is obtained by a study of the field
profile in the partially homogenized medium. The plots
on the right sides of Figs. 2 and 3 show the magnetic field
in a 40 period thick structure. In both cases the wavelengths
are between 6 and 7 times larger than the period.

The field profile in the nonhomogeneous peak of Fig. 2
shows that the variation of the field across individual layers
is very strong. Homogenization is therefore not justified. In
fact, this type of transmission has been previously de-
scribed in terms of a tight bindinglike model based on
modes bound to the interfaces between successive layers
[27]. It is clear that this type of propagation is incompatible
with effective medium theory and an effective index of
refraction cannot be defined.

Inspection of the field profile in the left-handed peak of
Fig. 3 shows that this case is in the intermediate region
where the medium exhibits homogeneouslike features to a
certain extent, but cannot be said to truly behave as a
homogeneous effective medium. The spatial field profile
in the medium is vaguely sinusoidal, but the oscillations
within one period are still relatively large, while the trans-
mitted fields of the partially homogenized and the fully
homogenized models are somewhat out of phase. It is clear
that a smaller period is required for a better effective
medium to be obtained. These results therefore suggest
that for �� 6d the effective medium theory is only mar-
ginally valid. It is likely that most applications will have
more stringent requirements on the material used, espe-
cially those involving negative refraction which are more
sensitive to spatial dispersion. The most direct way to
improve our effective medium is to increase the wave-
length to period ratio by reducing the period (experimen-
tally this would require designing smaller resonators with
the same resonance frequency). This is illustrated in Fig. 4
for which we have �� 12d. We have simply halved the
layer thicknesses and doubled the number of periods. The
nonhomogeneous features between 8 and 8.5 GHz which
we observe in Figs. 2 and 3 disappear and the agreement
between the transmission curves (left) as well as the field
profiles (right) is far better. This confirms that what we see
in Fig. 3 is indeed an intermediate case.

Using this approach, we emphasize the gray scale, grad-
ual nature of the homogenization of composites. The ques-
tion we should ask is generally not whether a composite is
homogenized at a given wavelength, but to what extent it
is, or even, to what extent it needs to be. The approach
described here gives us a handle on how close we are to the
medium needed for a given application.

 

FIG. 2. Left—transmission curves for the case of plasma
frequency (�8:3 GHz, wires and closed resonators—dashed
line) below the magnetic resonating frequency (8.6 GHz, reso-
nators alone—dot-dashed line). Right—the field profile for a
stack of 40 periods, at f � 8:93 GHz (� � 33:6 mm).

 

FIG. 3. Left—Transmission curves for the case of plasma
frequency (�10 GHz) above the magnetic resonating frequency
(8.6 GHz). Right—The field profile for a stack of 40 periods, at
f � 9:2 GHz (� � 32:6 mm). The period is d � 5 mm.
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The way to the design of better effective media seems to
be through the design of smaller resonators, with higher
quality factors and more localized fields. In other words,
resonators must be designed with resonances at wave-
lengths larger with respect to their size. Since the reso-
nance wavelength is on the order of

�������

LC
p

, where L and C
are the internal inductance and capacitance of the resona-
tor, a simple way to increase it is to use a broadside-
coupled design such as that proposed in Ref. [21].

Our approach can also be used to evaluate the homoge-
neity of composites not only as a function of frequency but
of angle of incidence as well. The rich range of refraction
behaviors accessible, for different polarizations and orien-
tations, is listed in Fig. 2 of Ref. [23]. However it is not
clear how far one can tilt away from normal incidence
before nontrivial spatial dispersion features typical of non-
homogeneous structures become important. Our approach
can be used in that case as well to delimit incidence angle
domains where homogenization is justified from domains
where it is not, without the use of cumbersome 3D
simulations.

In conclusion we have outlined a simple approach to the
analysis of composite metamaterials. Our approach con-
sists of building the effective medium model layer by layer,
as an anisotropic single negative stack. We qualitatively
reproduce experimental data available in the literature,
suggesting that the composites commonly being studied
have a size that places them at the borderline of homoge-
nization theory: they can exhibit features of heterogeneous
materials (e.g., the peak at 8.5 GHz, Fig. 3) in addition to
the effective medium left-handed properties (e.g., the peak
at 9 GHz, Fig. 3). Our indirect homogenization approach
provides a way to distinguish between the former and the
latter as well as a means to evaluate how well the effective
medium approximates the behavior of a given structure.
The single negative stack can be seen as an upper bound on
the effective medium quality of the composite. This allows
a designer to quickly and effectively evaluate the useful-
ness of a given composite using widely shared and straight-
forward 1D methods. Our approach can also be easily
adapted to the study of cylindrical geometries, e.g., the
electromagnetic cloak [28].
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FIG. 4. Left—Transmission curves for the case of plasma
frequency (�10 GHz) above the magnetic resonating frequency
(8.6 GHz). Right—The field profile for a stack of 80 periods, at
f � 9:2 GHz (� � 32:6 mm). The period is d � 2:5 mm.
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