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We present a general theory of the proximity effect in junctions between diffusive normal metals (DN)
and superconductors. Various possible symmetry classes in a superconductor are considered: even-
frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity state, odd-
frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity state. It is shown
that the pair amplitude in a DN belongs, respectively, to an ESE, OTE, OTE, and ESE pairing state since
only the even-parity s-wave pairing is possible due to the impurity scattering.
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It is well established that superconductivity is realized
due to the formation of Cooper pairs consisting of two
electrons. In accordance with the Pauli principle, it is
customary to distinguish spin-singlet even-parity and
spin-triplet odd-parity pairing states in superconductors,
where odd (even) refer to the orbital part of the pair wave
function. For example, s-wave and d-wave pairing states
belong to the former case while p-wave state belongs to the
latter one [1]. In both cases, the pair amplitude is an even
function of energy. However, the so-called odd-frequency
pairing states when the pair amplitude is an odd function of
energy can also exist. Then, the spin-singlet odd-parity and
the spin-triplet even-parity pairing states are possible.

The possibility of realizing the odd-frequency pairing
state was first proposed by Berezinskii in the context of
3He, where the odd-frequency spin-triplet hypothetical
pairing was discussed [2]. The possibility of the odd-
frequency superconductivity was then discussed in the
context of various mechanisms of superconductivity in-
volving strong correlations [3,4]. There are several experi-
mental evidences [5] which are consistent with the
realization of the odd-frequency bulk superconducting
state in Ce compounds [4,5]. In more accessible systems
(ferromagnet/superconductor heterostructures with inho-
mogeneous magnetization) the odd-frequency pairing state
was first proposed in Ref. [6] and then various aspects of
this state were intensively studied [7]. At the same time, the
very important issue of the manifestation of the odd-
frequency pairing in proximity systems without magnetic
ordering received no attention yet. This question is ad-
dressed in the present Letter.

Coherent charge transport in structures involving diffu-
sive normal metals (DN) and superconductors (S) was
extensively studied during the past decade both experimen-
tally and theoretically. However, almost all previous work
was restricted to junctions based on conventional s-wave
superconductors [8]. Recently, a new theoretical approach
to study charge transport in junctions based on p-wave and
d-wave superconductors was developed and applied to the

even-frequency pairing state [9,10]. It is known that in the
anisotropic paring state, due to the sign change of the pair
potential on the Fermi surface, a so-called midgap Andreev
resonant state (MARS) is formed at the interface [11,12].
As was found in [9,10], MARS competes with the prox-
imity effect in contacts with spin-singlet superconductors,
while it coexists with the proximity effect in junctions with
spin-triplet superconductors. In the latter case, it was pre-
dicted that the induced pair amplitude in the DN has a
peculiar energy dependence and the resulting local density
of states (LDOS) has a zero energy peak (ZEP) [10].
However, the relation of this unusual proximity effect to
the formation of the odd-frequency pairing state was not
yet clarified. Furthermore, there was no study of the prox-
imity effect in junctions with odd-frequency superconduc-
tors. The aim of the present Letter is to formulate a general
theory of the proximity effect in the DN=S junctions
applicable to any type of symmetry state in a supercon-
ductor forming the junction in the absence of spin-
dependent electronic scattering at the DN=S interface. It
will be shown that for spin-triplet [spin-singlet] supercon-
ductor junctions, odd-frequency spin-triplet even-parity
(OTE) pairing state [even-frequency spin-singlet even-
parity (ESE) pairing state] is generated in DN independent
of the parity of the superconductor.

Before proceeding with formal discussion, let us present
qualitative arguments illustrating the main conclusions of
the Letter. Two constrains should be satisfied in the con-
sidered system: (1) only the s-wave even-parity state is
possible in the DN due to isotropization by impurity scat-
tering [1], (2) the spin structure of induced Cooper pairs in
the DN is the same as in an attached superconductor. Then
the Pauli principle provides the unique relations between
the pairing symmetry in a superconductor and the resulting
symmetry of the induced pairing state in the DN. Namely,
for even-parity superconductors, ESE and OTE states, the
pairing symmetry in the DN should remain ESE and OTE.
On the other hand, for odd-parity superconductors, even-
frequency spin-triplet odd-parity (ETO) and odd-frequency
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spin-singlet odd-parity (OSO) states, the pairing symmetry
in the DN should be OTE and ESE, respectively. The above
results are based on general properties and independent of
the details of the geometry and the spin structure of the
spin-triplet superconductors.

The generation of the OTE state in the DN attached to
the ETO p-wave superconductor is of particular interest. A
similar OTE state can be generated in superconducting
junctions with diffusive ferromagnets [6,7] but due to
different physical mechanism. Although the symmetry
properties can be derived from the basic arguments given
above, the quantitative model has to be considered to prove
the existence of nontrivial solutions for the pair amplitude
in the DN in each of the above cases.

Let us start with the general symmetry properties of the
quasiclassical Green’s functions in the considered system.
The elements of retarded and advanced Nambu matrices
ĝR;A

 ĝ R;A � gR;A fR;A
�fR;A �gR;A

� �
(1)

are composed of the normal gR�;��r; ";p� and anomalous
fR�;��r; ";p� components with spin indices � and �. Here
p � pF= j pF j , pF is the Fermi momentum, r and "
denote coordinate and energy of a quasiparticle measured
from the Fermi level.

The function fR and the conjugated function �fR satisfy
the following relation [13,14]:

 

�f R�;��r; ";p� � ��f
R
�;��r;�";�p���: (2)

The Pauli principle is formulated in terms of the retarded
and the advanced Green’s functions in the following way
[13]:

 fA�;��r; ";p� � �f
R
�;��r;�";�p�: (3)

By combining the two above equations, we obtain
�fR�;��r; ";p� � �f

A
�;��r; ";p��

�. Further, the definitions of
the even-frequency and the odd-frequency pairing are
fA�;��r; ";p� � fR�;��r;�";p� and fA�;��r; ";p� �
�fR�;��r;�";p�, respectively. Finally we get

 

�f R�;��r; ";p� � �f
R
�;��r;�";p��

� (4)

for the even-frequency pairing and

 

�f R�;��r; ";p� � ��f
R
�;��r;�";p��

� (5)

for the odd-frequency pairing. In the following, we will
focus on Cooper pairs with Sz � 0 for the simplicity,
remove the external phase of the pair potential in the
superconductor and concentrate on the retarded part of
the Green’s function. In the case of pairing with Sz � 1
our final results will not be changed. We consider a junc-
tion consisting of a normal (N) reservoir and a supercon-
ducting reservoir connected by a quasi-one-dimensional
diffusive conductor (DN) with a length L much larger
than the mean free path. The interface between the DN

and the superconductor (S) at x � L has a resistance Rb
and the N=DN interface at x � 0 has a resistance Rb0 . For
Rb0 � 1, the present model is reduced to the DN=S bilayer
with vacuum at the DN free surface. The Green’s function
in the superconductor can be parametrized as g��"��̂3 	
f��"��̂2 using Pauli matrices, where the suffix 	��� de-
notes the right (left) going quasiparticles. g��"� and f��"�
are given by g	�"� � gR�;��r; ";p�, g��"� � gR�;��r; "; �p�,
f	�"� � fR�;��r; ";p�, and f��"� � fR�;��r; "; �p�, respec-
tively, with �p � �pF= j pF j and �pF � ��pFx; pFy�. Using
the relations (4) and (5), we obtain that f��"� �
�f���"��� for the even-frequency pairing and f��"� �
��f���"��� for the odd-frequency pairing, respectively,
while g��"� � �g���"��� in both cases.

In the DN region only the s-wave even-parity pairing
state is allowed due to isotropization by impurity scattering
[1]. The resulting Green’s function in the DN can be
parametrized by cos��̂3 	 sin��̂2 in a junction with an
even-parity superconductor and by cos��̂3 	 sin��̂1 in a
junction with an odd-parity superconductor. The function �
satisfies the Usadel equation [15]

 D
@2�

@x2 	 2i" sin� � 0 (6)

with the boundary condition at the DN=S interface [9]

 

L
Rd

�
@�
@x

�
jx�L �

hF1i

Rb
; (7)

 F1 �
2T1�fS cos�L � gS sin�L�

2� T1 	 T1�cos�LgS 	 sin�LfS�
; (8)

and at the N=DN interface

 

L
Rd

�
@�
@x

�
jx�0 �

hF2i

Rb0
; F2 �

2T2 sin�0

2� T2 	 T2 cos�0
; (9)

respectively, with �L � �jx�L and �0 � �jx�0. Here, Rd
and D are the resistance and the diffusion constant in the
DN, respectively. The brackets h. . .i denote averaging over
the injection angle �

 hF1�2����i �

R�=2
��=2 d� cos�F1�2����R�=2
��=2 d�T1�2� cos�

; (10)

 T1 �
4cos2�

Z2 	 4cos2�
; T2 �

4cos2�

Z02 	 4cos2�
; (11)

where T1;2 are the transmission probabilities, Z and Z0

are the barrier parameters for two interfaces. Here gs is
given by gS � �g	 	 g��=�1	 g	g� 	 f	f�� and
fS � �f	 	 f��=�1	 g	g� 	 f	f�� for the even-parity
pairing and fS � i�f	g� � f�g	�=�1	 g	g� 	 f	f��
for the odd-parity pairing, respectively, with g� �

"=
�������������������
"2 � �2

�

q
and f� � ��=

�������������������
�2
� � "

2
q

. �� � ������
for even-frequency paring and �� � �odd�"������ for
odd-frequency pairing, ����� is the form factor with
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�	 � � and �� � ���. � is the maximum value of
the pair potential for even-frequency pairing.

In the following, we will consider four possible symme-
try classes of superconductor forming the junction and
consistent with the Pauli principle: ESE, ETO, OTE, and
OSO pairing states. We will use the fact that only the even-
parity s-wave pairing is possible in the DN due to the
impurity scattering and that the spin structure of pair
amplitude in the DN is the same as in an attached super-
conductor.

1. Junction with ESE superconductor.—In this case,
f��"� � f����"� and g��"� � g����"� are satisfied.
Then, fS��"� � f�S�"� � f�S and gS��"� � g�S�"� � g�S
and we obtain for F�1��"�

 F�1��"� �
2T1�fS cos��L��"� � gS sin��L��"��

2� T1 	 T1�cos��L��"�gS 	 sin��L��"�fS�
:

It follows from Eqs. (6)–(9) that sin����"� � sin��"� and
cos����"� � cos��"�. Thus the ESE state is formed in the
DN, in accordance with the Pauli principle.

2. Junction with ETO superconductor.—Now we have
f��"� � f����"� and g��"� � g����"�. Then, fS��"� �
�f�S�"� � �f

�
S and gS��"� � g�S�"� � g�S. As a result,

F�1��"� is given by

 F�1��"� � �
2T1�fS cos��L��"� 	 gS sin��L��"��

2� T1 	 T1�cos��L��"�gS � sin��L��"�fS�
:

It follows from Eqs. (6) and (9) that sin����"� �
� sin��"� and cos����"� � cos��"�. Thus the OTE state
is formed in the DN. Remarkably, the appearance of the
OTE state is the only possibility to satisfy the Pauli prin-
ciple, as we argued above. Interestingly, the OTE pairing
state can be also realized in superconductor/ferromagnet
junctions [6,7], but the physical mechanism differs from
the one considered here.

3. Junction with OTE superconductor.—In this case
f��"� � �f����"� and g��"��g����"�. Then fS��"� �
�f�S�"� and gS��"� � g�S�"� and one can show that
F�1��"� has the same form as in the case of ETO super-
conductor junctions. Then, we obtain sin����"� �
� sin��"� and cos����"� � cos��"�. These relations
mean that the OTE pairing state is induced in the DN.

4. Junction with OSO superconductor.—We have
f��"� � �f

�
���"�, g��"� � g����"� and fS��"� �

f�S�"�, gS��"� � g�S�"�. One can show that F�1��"� takes
the same form as in the case of ESE superconductor
junctions. Then, we obtain that sin����"� � sin��"� and
cos����"� � cos��"�. Following the same lines as in
case 1, we conclude that the ESE pairing state is induced
in the DN.

We can now summarize the central conclusions as fol-
lows:

Symmetry of
the pairing in
superconductors

Symmetry of the
pairing in the DN

1 Even-frequency
spin-singlet
even-parity (ESE)

ESE

2 Even-frequency
spin-triplet
odd-parity (ETO)

OTE

3 Odd-frequency
spin-triplet
even-parity (OTE)

OTE

4 Odd-frequency
spin-singlet
odd-parity (OSO)

ESE

Note that for even-parity superconductors the resulting
symmetry of the induced pairing state in the DN is the
same as that of a superconductor (cases 1 and 3). On the
other hand, for odd-parity superconductors, the induced
pairing state in the DN has symmetry different from that of
a superconductor (cases 2 and 4).

To illustrate the main features of the proximity effect in
all the above cases, we calculate the LDOS ��"� �
real�cos��"�� and the pair amplitude f�"� � sin��"� in
the middle of the DN layer at x � L=2. We fix Z � 1, Z0 �
1, Rd=Rb � 1, Rd=Rb0 � 0:01 and ETh � D=L2 � 0:25�.

We start from junctions with ESE superconductors and
choose the s-wave pair potential with �� � 1 (Fig. 1).
The LDOS has a gap and the real (imaginary) part of f�"�
is an even (odd) function of " consistent with the formation
of the even-frequency pairing. In junctions with ETO
superconductors, we choose px-wave pair potential with
�	 � ��� � cos� as a typical example. In this case, a
unusual proximity effect is induced where the resulting
LDOS has a zero energy peak (ZEP) [10]. The resulting
LDOS has a ZEP [10] since g2�"� 	 f2�"� � 1 and f�" �
0� becomes a purely imaginary number. This is consistent
with f�"� � �f���"� and the formation of the OTE pair-
ing in the DN. To discuss junctions with an odd-frequency
superconductor we choose �odd�"� � �C"=�1	 �"=��2� as
the simplest example of the " dependence of an odd-
frequency superconductor pair potential. At " � �, the
magnitude of �odd�"� becomes maximum. Here we choose
�C< 1 when LDOS of bulk superconductor does not have a

gap around " � 0. Let us first consider junctions with OTE
superconductors and choose an s-wave pair potential as an
example. The resulting LDOS has a ZEP, in contrast to
junctions with ESE superconductors where the resulting
LDOS has no ZEP. The formation of the ZEP is due to the
similar reason in the ETO superconductor junctions, where
f�" � 0� is a pure imaginary number. Finally, let us dis-
cuss junctions with OSO superconductors and choose an
px-wave pair as an example. In this case, the ESE pairing is
induced in the DN and f�"� � f���"� is satisfied. The
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resulting LDOS has a gap since f�" � 0� becomes a real
number, in contrast to junctions with OTE super-
conductors.

In summary, we have formulated a general theory of the
proximity effect in superconductor/diffusive normal metal
junctions. Four symmetry classes in a superconductor al-
lowed by Pauli principle are considered: (1) even-
frequency spin-singlet even-parity (ESE), (2) even-
frequency spin-triplet odd-parity (ETO), (3) odd-frequency
spin-triplet even-parity (OTE) and (4) odd-frequency spin-
singlet odd-parity (OSO). We have found that the resulting
symmetry of the induced pairing state in the DN is (1) ESE
(2) OTE (3) OTE, and (4) ESE, respectively. The symmetry

in DN is established due to the isotropization of the pair
wave function by the impurity scattering and spin conser-
vation across the interface. This universal feature is very
important to classify unconventional superconductors by
using proximity effect junctions.

One of the authors Y. T. expresses his sincerest gratitude
to clarifying discussions with M. Eschrig and Ya. V.
Fominov. Discussions with Y. Fuseya, K. Miyake, Yu. V.
Nazarov, A. D. Zaikin, A. F. Volkov, and K. Efetov are
gratefully acknowledged. This work is supported by
Grant-in-Aid for Scientific Research (Grant
Nos. 17071007 and 17340106) from the Ministry of
Education, Culture, Sports, Science and Technology of
Japan.

[1] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[2] V. L. Berezinskii, JETP Lett. 20, 287 (1974).
[3] A. Balatsky and E. Abrahams, Phys. Rev. B 45, 13 125

(1992); M. Vojta and E. Dagotto, Phys. Rev. B 59, R713
(1999); P. Coleman, E. Miranda, and A. Tsvelik, Phys.
Rev. B 49, 8955 (1994).

[4] Y. Fuseya, H. Kohno, and K. Miyake, J. Phys. Soc. Jpn.
72, 2914 (2003).

[5] G. Q. Zheng et al., Phys. Rev. B 70, 014511 (2004);
S. Kawasaki et al., Phys. Rev. Lett. 91, 137001 (2003).

[6] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev.
Lett. 86, 4096 (2001).

[7] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod.
Phys. 77, 1321 (2005); I. Sosnin et al., Phys. Rev. Lett. 96,
157002 (2006); A. Kadigrobov, R. I. Shekhter, and
M. Jonson, Europhys. Lett. 54, 394 (2001); M. Eschrig
et al., Phys. Rev. Lett. 90, 137003 (2003); R. S. Keizer
et al., Nature (London) 439, 825 (2006); Y. V. Fominov,
A. A. Golubov, and M. Y. Kupriyanov, JETP Lett. 77, 510
(2003).

[8] W. Belzig et al., Superlattices Microstruct. 25, 1251
(1999); A. A. Golubov, M. Yu. Kupriyanov, and
E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004).

[9] Y. Tanaka, Y. V. Nazarov, and S. Kashiwaya, Phys. Rev.
Lett. 90, 167003 (2003); Y. Tanaka et al., Phys. Rev. B 69,
144519 (2004).

[10] Y. Tanaka and S. Kashiwaya, Phys. Rev. B 70, 012507
(2004); Y. Tanaka, S. Kashiwaya, and T. Yokoyama, Phys.
Rev. B 71, 094513 (2005); Y. Tanaka et al., Phys. Rev. B
72, 140503(R) (2005); Y. Asano, Y. Tanaka, and
S. Kashiwaya, Phys. Rev. Lett. 96, 097007 (2006).

[11] Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451
(1995); S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63,
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FIG. 1. Local density of states ��"� and pair amplitude f�"� at
the center of the DN, x � L=2 is plotted. Ref and Imf denote
the real and imaginary part of f�"�. The pairing symmetry of the
superconductor is (a) ESE, (b) ETO (c) OTE, and (d) OSO,
respectively. For (c) and (d), we choose �C � 0:8. The resulting
symmetry of f�"� is (a) ESE, (b) OTE (c) OTE and (d) ESE,
respectively.
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