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We study a lattice bipolaron on a staggered triangular ladder and triangular and hexagonal lattices with
both long-range electron-phonon interaction and strong Coulomb repulsion using a novel continuous-time
quantum Monte Carlo algorithm to solve the two-particle Coulomb-Fröhlich model. The algorithm is
preceded by an exact integration over phonon degrees of freedom, and as such is extremely efficient. The
bipolaron effective mass and radius are computed. Bipolarons on lattices constructed from triangular
plaquettes have a novel crablike motion, and are small but very light over a wide range of parameters. We
discuss the conditions under which such particles may form a Bose-Einstein condensate with high
transition temperature, proposing a route to room temperature superconductivity.
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As recognized by Landau, Pekar, and Fröhlich, an elec-
tron may drag a lattice distortion as it moves through an
ionic material, leading to a new particle—the polaron,
which has quite different properties from the original
electron (for reviews see, for example, Refs. [1,2]). At
weak coupling, two polarons can be bound into a large
bipolaron via exchange forces, without assuming anything
more complicated than the Fröhlich electron-phonon inter-
action (EPI) [3]. On increasing density large bipolarons
overlap, giving rise to either a conventional (BCS) super-
conductor or a normal metal. At strong coupling, the EPI
may overcome the Coulomb repulsion between electrons,
so the resulting interaction becomes attractive at a distance
of the order of the lattice constant [4] and two small
polarons form tightly bound pairs, i.e., small bipolarons.
Earlier studies [5] considered small bipolarons as localized
objects. However, a perturbation expansion in terms of
hopping integrals has proved they are itinerant quasipar-
ticles existing in Bloch states and forming a Bose-Einstein
condensate (BEC) of charge 2e bosons at low temperatures
[6].

For very strong EPI, polarons are ‘‘self-trapped’’ on a
single lattice site, with energy Ep � ��zt, where � is the
electron-phonon coupling constant, t is the hopping pa-
rameter and z is the coordination number. Expanding about
the atomic limit in small t (which is small compared to Ep
in the small polaron regime, � > 1) the polaron mass is
computed as m� � m0 exp��zt�=@!�, where ! is the fre-
quency of Einstein phonons, m0 is the rigid lattice band
mass, and � is a numerical constant. For the Holstein
model [7], which is purely site local, � � 1. Bipolarons
are on-site singlets in the Holstein model and their mass
m��H appears only in the second order of t [6] scaling as
m��H / �m

��2 in the limit @!� �, and as m��H / �m
��4 in a

more realistic regime @!� � [4]. Here � � 2Ep �U is
the bipolaron binding energy, and U is the on-site
(Hubbard) repulsion. Since the HubbardU is 1 eVor larger

in strongly correlated materials, the EPI must be large to
stabilize on-site bipolarons and the Holstein bipolaron
mass appears very large, m��H =m0 > 1000, for realistic
values of phonon frequency.

This estimate led some authors to the conclusion that the
formation of itinerant small polarons and bipolarons in real
materials is unlikely [8], and high-temperature bipolaronic
superconductivity is impossible [9]. However, one should
note that the Holstein model is an extreme polaron model,
and typically yields the highest possible value of the (bi)-
polaron mass in the strong-coupling limit. Many advanced
materials with low density of free carriers and poor mobil-
ity (at least in one direction) are characterized by poor
screening of high-frequency optical phonons and are more
appropriately described by a long-range Fröhlich EPI [4].
For Fröhlich type interactions, the parameter � < 1 (� �
0:3 on square and triangular lattices [10,11]), reflecting the
fact that when an electron hops the lattice is already
partially deformed. Thus, the unscreened Fröhlich EPI
forms relatively light small polarons, which are several
orders of magnitude lighter than small Holstein polarons.
This has been confirmed numerically by Monte Carlo
simulations [11,12], Lanczos diagonalization [13], and
variational calculations [14].

This unscreened Fröhlich interaction combined with on-
site repulsive correlations can also bind holes into mobile
intersite bipolarons [10,15]. Using an advanced variational
method, Bonča and Trugman [14] studied the binding of
two electrons via the chain model of Ref. [12] with nearest-
neighbor EPI and a Hubbard U. Intersite bipolarons of
Ref. [14] propagate along the chain with a light mass which
is, however, still second order in the polaron mass as in the
Holstein model.

Here we study a bipolaron on a staggered triangular
ladder (1D), triangular (2D), and strongly anisotropic hex-
agonal (3D) lattices using a continuous-time quantum
Monte Carlo technique. On such lattices, bipolarons are
found to move with a crablike motion [Fig. 1(b)], which is
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distinct from the crawler motion [Fig. 1(c)] on cubic
lattices [6,14]. Such bipolarons are both small and very
light (first order in the polaron mass) for a wide range of
electron-phonon couplings and phonon frequencies.

We use a generic Coulomb-Fröhlich model of electron-
phonon interactions in layered 2D materials which has the
following Hamiltonian,
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Each vibrating ion has one phonon degree of freedom �m
associated with a single atom. The sites are numbered by
the indices n or m for electrons and ions, respectively.
Operators c annihilate electrons. The phonon subsystem is
a set of independent oscillators with frequency! and mass
M. Here hnn0i denote pairs of nearest neighbors, and P̂m �
�i@@=@�m is the ion momentum operator. In the plane
electrons are mobile, and hence in-plane instantaneous

Coulomb repulsion V�n;n0� is heavily screened, with
only on-site repulsion U and nearest-neighbor repulsion
VC. In contrast, the Fröhlich interaction is assumed to be
long range, due to unscreened interaction with c-axis high-
frequency phonons [4]. The form of the interaction with
c-axis polarized phonons is specified via the force function
[12], fm�n� � �
�m� n�2 	 1��3=2, where � is a con-
stant. The dimensionless electron-phonon coupling con-
stant � is defined as � �

P
mf

2
m�0�=2M!2zt, which is the

ratio of the polaron energy at t � 0 to the kinetic energy of
the free electron zt. Following the same argument that was
used to justify the in-plane long-range Fröhlich interaction,
the Coulomb interaction between electrons in neighboring
planes is not well screened, as discussed later in this Letter.

In the limit of high phonon frequency @!� t and large
on-site Coulomb repulsion, the model is reduced to an
extended Hubbard model with intersite attraction and sup-
pressed double occupancy [15]. Then the Hamiltonian can
be projected onto the subspace of nearest-neighbor inter-
site crab bipolarons. In contrast with the crawler bipolaron,
the crab bipolaron’s mass scales linearly with the polaron
mass (m�� � 4m� on the staggered chain and m�� � 6m�

on the triangular lattice). Here, we aim to determine if such
a bipolaron can exist for realistic values of the electron-
phonon coupling and phonon frequency.

To answer this question, we have extended the
continuous-time quantum Monte-Carlo (CTQMC) algo-
rithm [11,12,16,17] to systems of two particles with
long-range EPI and strong Coulomb repulsion. We have
solved the bipolaron problem on a staggered ladder
[Fig. 1(a)] and on triangular and anisotropic hexagonal
lattices from weak to strong coupling in a realistic parame-
ter range where usual limiting approximations fail. The
CTQMC method employed here has been described in
detail with regard to the single polaron problem in
Refs. [11,16,17]. Here we give a quick overview of the
extended algorithm. The initial step is to determine the
effective bipolaron action that results when the phonon
degrees of freedom have been integrated out analytically.
The action is a functional of two polaron paths in imagi-
nary time which form the bipolaron and is given by the
following double integral,
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The full interaction between the particles is
��r�r���; r��0�� �

P
mfm�r����fm	�r�r��0��. �! � @!=t

and �� � t=kBT, with �� �@!��1. The ends of the two
paths at � � 0 and � � � are related by an arbitrary trans-
lation, �r. The indices i � 1, 2 and j � 1, 2 represent the
fermion paths. Analytic integration is performed over sec-

tions of parallel paths. From this starting point, the bipo-
laron is simulated using the Metropolis Monte Carlo (MC)
method. The electron paths are continuous in time with
hopping events (or kinks) introduced or removed from the
path with each MC step. In contrast to the one-particle
case, fixing the end configurations limits the update pro-

 

FIG. 1. (a) Schematic of the ladder model. Electrons sit on
opposite sides (legs) of a staggered ladder with intersite distance
a, with ions vibrating across the ladder on an identical system
sitting a height a above the electron legs. (b) Schematic motion
of the crab bipolaron—states A and B are degenerate.
(c) Schematic of the crawler motion.
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cedure to inserting and removing pairs of kinks and anti-
kinks (kinks facing in the opposite direction). We have
identified 8 different types of such binary updates which
can be used in the Monte Carlo procedure. We also ex-
change the paths using a combination of kink insertion and
antikink removal, and using some of the binary updates.
From the ensemble, the ground state bipolaron energy and
effective mass are computed as in Ref. [16]. The bipolaron
radius is computed as

 Rbp �

� �������������������������������������
1

�

Z �

0
�r12���

2d�

s �
: (3)

Figure 2(a) shows the ratio of polaron to bipolaron
masses on the staggered ladder as a function of effective
coupling and phonon frequency for VC � 0. The bipolaron
to polaron mass ratio is about 2 in the weak coupling
regime (�� 1) as it should be for a large bipolaron [3].
In the strong coupling, large phonon frequency limit the
mass ratio approaches 4, in agreement with arguments
given above. In a wide region of parameter space, we
find a bipolaron/polaron mass ratio of between 2 and 4
and a bipolaron radius similar to the lattice spacing, see
Figs. 2(b) and 3. Thus the bipolaron is small and light at the
same time. Taking into account additional intersite
Coulomb repulsion VC does not change this conclusion.
The bipolaron is stable for VC < 4t, see inset of Fig. 3. As
VC increases the bipolaron mass decreases but the radius
remains small, at about 2 lattice spacings. Significantly, the

absolute value of the small bipolaron mass is only about
4 times the bare electron mass m0, for � � @!=t � 1 (see
Fig. 3).

The toy problem on the triangular ladder contains the
essential physics of the crab bipolaron. We demonstrate
this by simulating the bipolaron on an infinite triangular
lattice including exchanges and large on-site Hubbard
repulsion U � 20t and VC � 0 (Fig. 4). Moderate cou-
plings at @! � t also lead to light small bipolarons. Fi-
nally, we have simulated the bipolaron on a hexagonal lat-
tice, with out-of-plane hopping t0 � 0:3t, and a short range
phonon-mediated interplane interaction [�h�n; n0� �
�t�n; n0��rr0 where r are plane indices, subscript h stands
for hexagonal and t for triangular]. We have calculated
values of the bipolaron mass and radius for experimentally
achievable values of the phonon frequency @! � t �
200 meV and electron-phonon coupling � � 0:36. We
have found a light in-plane mass, m��xy � �4:49

0:04�m0xy. Out-of-plane m��z ��68:4
1�m0z is Holstein-
like, where m0z � @

2=2d2t0 and m0xy � @
2=3a2t. The bi-

polaron radius is Rbp � �2:60
 0:03�a, sitting mainly in
the xy plane. Comparison with Fig. 4 shows that the z-axis
Holstein interaction generates a very effective potential
barrier, maintaining the quasiparticle in the plane, and
ensuring its stability as interplane hopping is introduced.
Since the particle is well localized in the z direction, the
residual Coulomb interplane repulsion will also act to
enhance the in-plane pairing.

We now discuss the possible condensation of such
quasiparticles. When bipolarons are small and pairs do
not overlap, the pairs can form a BEC at kBTBEC �

3:31@2�2nB=a
2
���
3
p
d�2=3=�m��2=3

xy m��1=3
z �. If we choose real-

istic values for the lattice constants of 0.4 nm in the plane
and 0.8 nm out of the plane, and allow the density of bosons
to be nB � 0:12 per lattice site, which easily avoids over-
lap of pairs, then TBEC � 323 K. There are several situ-
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ations under which a BEC might not be formed. The long-
range nature of the Fröhlich interaction might cause clus-
tering of polarons into finite-size mesoscopic textures,
destroying the condensate. However, the long-range inter-
plane repulsion between bipolarons will stop bipolarons
from pairing, as long as there is a sufficiently large density
of particles. The analytical analysis of such multipolaron
systems in the antiadiabatic limit on the ladder and on a
two-dimensional lattice [15] agrees with this argument,
revealing a window in the parameter space where small
bipolarons are formed while n-particle bound states with
n � 3 do not exist. Furthermore, Monte Carlo studies of
mesoscopic textures with realistic lattice deformations and
Coulomb repulsion [18] show that bipolarons also domi-
nate over phase separation in the adiabatic limit since they
effectively repel each other [1].

Also, long-range Coulomb repulsion might in principle
cause Wigner crystallization of the (bi)polaronic liquid.
However, in highly polarizable ionic lattices with a large
static dielectric constant, 	0 � 1, where the Coulomb-
Fröhlich model is relevant, the net long-range repulsion
is relatively weak since the relevant dimensionless parame-
ter rs � m�e2=	0�4
x=3a2d�1=3 & 1 at any relevant den-
sity and effective mass. The Wigner crystallization appears
around rs ’ 100 or larger, which corresponds to an ex-
tremely small atomic density of (bi)polarons x � 10�6

when 	0 � 30 (like in La2�xSrxCuO4) and m� � 5me.
Hence, we expect the (bi)polaronic carriers to be in the
liquid state at relevant doping levels, as required. A small
value of rs is also important so that there is a negligible
correction to TBEC due to the long-range interaction be-
tween bipolarons. rs is expected to be small in ionic
materials, which justifies our estimate assuming free
bipolarons.

In summary, the CTQMC algorithm has been extended
to simulate bipolarons formed in the Coulomb-Fröhlich
model, leading to an unusual configuration on triangular
lattices that is both small and superlight (especially com-
pared to Holstein bipolarons). Such a particle has been
found in a wide parameter range using CTQMC at achiev-
able phonon frequencies and couplings in the presence of
strong Coulomb repulsion. Such bipolarons might have a
superconducting transition in excess of room temperature.
We believe that the following recipe is worth investigating:
(a) The parent compound should be an ionic insulator with
light ions to form high-frequency optical phonons. (b) The
structure should be quasi two-dimensional to ensure poor
screening of high-frequency c-axis polarized phonons, but
good in-plane screening. (c) A triangular lattice is required
in combination with strong, on-site Coulomb repulsion to
form the small superlight crab bipolaron.
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