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Starting from the t-J model, we derive the effective field theory describing the spin dynamics in
insulating La2�xSrxCuO4, x & 0:055, at low temperature. The theory results in a disordered spiral ground
state, in which the staggered component of the copper spins is confined in a plane determined by the spin
anisotropies. The static spin structure factor obtained in our calculations is in perfect agreement with
neutron scattering data over the whole range of doping in both, the Néel and the spin-glass phase. We
show that topological defects (spin vortex-antivortex pairs) are an intrinsic property of the disordered
spiral ground state.
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Over the past two decades, much progress has been
made towards a better understanding of the magnetic prop-
erties of La2�xSrxCuO4 (LSCO), the prototypical cuprate
superconductor. The phase diagram of LSCO shows that
the magnetic state changes tremendously with Sr doping.
The three-dimensional antiferromagnetic Néel order iden-
tified [1] below 325 K in the parent compound disappears
at doping x � 0:02 and gives way to the so-called spin-
glass phase which extends up to x � 0:055. In the Néel and
the spin-glass phase, the system essentially behaves as an
Anderson insulator and exhibits only hopping conductivity.
Superconductivity then sets in for doping x > 0:055 [2].
Despite intense theoretical research, the magnetic structure
of the weakly doped region remained unexplained. In that
respect, the most intriguing property of LSCO is the static
incommensurate magnetic ordering observed at low tem-
perature in elastic neutron scattering experiments. This
ordering manifests itself as a scattering peak shifted with
respect to the antiferromagnetic position. Very importantly,
the incommensurate ordering is a generic feature of LSCO.
According to experiments in the Néel phase, the incom-
mensurability is almost doping independent and directed
along the orthorhombic b axis [3]. In the spin-glass phase,
the shift is also directed along the b axis, but scales linearly
with doping [4–6]. Finally, in the underdoped supercon-
ducting region (0:055 & x & 0:12), the shift still scales
linearly with doping, but it is directed along the crystal
axes of the tetragonal lattice [7].

These observations caused a renewal of theoretical in-
terest in the idea of spin spirals in cuprates, both from the
phenomenological [8–11] and the microscopic [12–14]
point of view. In relation to the t-J model, this idea was
first formulated by Shraiman and Siggia [15], who pointed
out that for an appreciable superexchange, it is energeti-
cally favorable to allow the collinear Néel state to relax and
form a spiral, in which holes can propagate more easily. In
this Letter, we formulate the effective field theory that
describes the spin-glass phase of LSCO at low temperature.
We study the ground state, calculate the spin structure

factor, and analyze the nature of the phase transition
from the Néel to the spin-glass state.

Model.—In insulating LSCO, holes are trapped by the
Coulomb potential of the Sr ions and form hydrogenlike
bound states  �r� � ���r� � �

���������
2=�

p
�e��r. The wave

function has two components corresponding to up and
down sublattices, described by the two-component spinor
� (pseudospin). Mixing between the two sublattices, the
physical origin of the spiral, is conveniently described by
rotations of these pseudospins [13]. We use � � 0:4 for the
inverse localization length [16] and refer to these bound
states as impurities. The temperature corresponding to the
binding energy is about Tb � 100 K [13]; hence at T � Tb
the charge degrees of freedom are frozen. For even lower
temperatures T � Tp � 30 K [14], the orthorhombic dis-
tortion pins the impurities to the hole pocket centered on
the b axis, which according to Ref. [13] induces spirals
directed along the b direction. Since we consider T � Tp,
the relevant degrees of freedom are the spins of the Cu ions
and the impurity pseudospins.

In the framework of the nonlinear �model (NLSM), the
staggered component of the copper spins is described by a
continuous vector field ~n�r�. Using the orthorhombic co-
ordinate system, see Fig. 1, we denote vectors acting in
spin space by arrows and chose the bold font for vectors in
coordinate space. Having in mind the above discussion of
the effective degrees of freedom, we write the energy of a
single layer of LSCO as
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d2r��r� ri�� ~n�r� � ~li	�eb � r� ~n�r�; (1)

where n�, � � a, b, c, denotes the components of the ~n
field, subject to the constraint ~n2 � 1. The first line in
Eq. (1) is the elastic energy [17] which takes into account
the Dzyaloshinski-Moriya (DM) and the XY anisotropies,
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with D � 2:5 meV and
������
�c

p
� 5 meV. These parameters

follow from neutron scattering data at zero doping [18]. We
use �s � 0:18J for the spin stiffness and c � 1:66J for the
spin-wave velocity, with J � 130 meV. The second line in
Eq. (1) represents the interaction of the ~n field with the
impurity pseudospins ~li �

1
2�
y
i ~��i; see Ref. [14]. The

impurities are located at positions ri and ��r� � �2�r�.
The coupling constant g � J has been calculated previ-
ously within the extended t-J model [12]. Equation (1)
describes the static limit of the effective field theory. This
limit is sufficient to study ground state properties because
(1) results in a long-range interaction [see Eq. (4) below].

The anisotropies in Eq. (1) pin the ~n field to a particular
spatial direction. Because the XY term is larger than
the DM anisotropy,

������
�c

p
>D, the staggered field ~n is

coplanar and lies in the ab plane [19]. For a single CuO2

layer at zero temperature, there is no mechanism that
deflects ~n out of this plane. Substituting ~n � �na; nb; nc� �
�sin�; cos�; 0� in Eq. (1), the energy of the effective O�2�
NLSM reads
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(2)

where li �
1
2�
y
i �

c�i is an Ising variable taking the values
1

2 and M �
���
2
p
g=�s � 8. In Eq. (2), we have neglected

the DM term D2=c2sin2� because in the spin-glass phase,
the angle ��r� quickly varies at a scale much shorter than
lDM � c=D� 100 and since hsin2�i � 1

2, the DM term can
be safely neglected. We thus assume that the only effect of
the DM term is to pin the direction of the staggered
magnetization in the Néel phase. Very importantly,
Eq. (2) is exact in the sense that it is valid for arbitrary �
and not restricted to small angles.

To integrate out the � field, we start with a single
impurity. The variation of Eq. (2) with respect to � yields
�r2��r� 
 2Ml�eb � r���r� � 0, which has the solution
��r� � l#�r�, where #�r� � M

�
eb�r
r2 f�1
 2�r�e�2�r � 1g.

Because of the linearity of the problem, the solution for N
impurities is the superposition

 ��r� �
XN
i�1

li#�r� ri�: (3)

Substituting this solution into Eq. (2) yields an expression
of the energy in terms of the Ising pseudospins li only

 EI �
2�sM

2�2

�

XN
i�j

liljfF1��rij� 
 cos�2�ij�F2��rij�g;

(4)

with F1�y� � �y2K2�2y� and F2�y� � 1=y2 � yK3�2y� �
y2K2�2y�. Here �ij is the angle between the vectors eb and
rij � ri � rj, and Kn are modified Bessel functions. For
r� 1=�, the above expression is equivalent to the usual
dipole-dipole interaction �/ cos�2�ij�=r2

ij	.
Ground state and destruction of Néel order.—We per-

form classical Monte Carlo simulation to find the ground
state of the Ising pseudospins described by Eq. (4) using
the same algorithm as in Ref. [14]. We average observables
over many realizations of random impurity distributions.
For a particular realization, we consider up to N � 200

Ising pseudospins li on a square lattice of size L �
���������
N=x

p
.

In order to minimize finite-size effects, we orient the lattice
along the orthorhombic coordinate system, apply periodic
boundary conditions along the a axis and extract relevant
quantities only from the central quarter of the system. The
b direction is left open, in order not to impose an artificial
constraint on the spiral pitch. Once the Ising ground state is
found, the ~n field is determined according to Eq. (3). Note
that ��r� in (3) can always be shifted by a constant �0. We
set �0 � 0 and therefore have � � 0 and ~n � ~eb in the
undoped system. Figure 1(a) shows a characteristic ground
state for a particular realization at doping x � 0:05. The
systems forms large domains, stretched along the a axis, in
which all pseudospins point in the same direction. The
presence of Néel order can be identified as a nonzero
hnbi. For a given doping, the average is taken over the
central quarter of the system and over many realizations of
random impurity positions. We first performed calculations
for �! 1 (pointlike impurities) and found that Néel order
is not destroyed at least up to x � 0:05; see Fig. 2(a). In
this case, the pseudospins align in an antiparallel pattern
along the b direction, on a scale of the order of the
separation between impurities. The angle � is thus small
and the resulting n field never completes a full rotation. For
finite �, the situation is qualitatively different because for
sufficiently small distances between impurities, the combi-
nation in brackets f. . .g in Eq. (4) is always negative. This

 

FIG. 1 (color online). Characteristic ground state configuration
of a particular realization at x � 0:05. The system (a) without
defects has higher energy than the same system (b) with a vortex-
antivortex pair (squares). The impurity pseudospins li are ori-
ented along the c axis. Full (open) circles correspond to values
� 1

2 (
 1
2 ). Small arrows represent the ~n field. The system forms

domains stretched along the a direction, in which all pseudo-
spins are aligned in parallel.

PRL 98, 037001 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 JANUARY 2007

037001-2



favors parallel alignment of the pseudospins and hence
leads to the formation of parallel Ising domains; see
Fig. 1(a). The domains have a finite width because the
long-range tail of Eq. (4) still favors antiparallel alignment
along the b direction. The width w depends on doping and
on �, but also on the size of the lattice as w /

����
L
p

. The
domains thus become macroscopic in the thermodynamic
limit. The mechanism for the domain formation is exactly
the same as for ferromagnets [20]. We will show that
topological defects lead to finite, but still very large do-
main sizes. The doping dependence of hnbi for � � 0:4 is
shown in Fig. 2(a). The phase transition takes place at xc �
0:02, in very good agreement with experiments. The small
deviations from zero at x � 0:02 in Fig. 2(a) are due to
finite-size effects. It is remarkable that the correct critical
concentration xc is obtained for � � 0:4 that is known
from the variable range hopping conductivity [16].

Topological defects.—There are two kinds of topologi-
cal defects in a 2D O�3� NLSM, vortices and instantons
[21]. Instantons lead to noncoplanar spin configurations
that, according to our calculations, increase the energy
because the system prefers coplanar pseudospin arrange-
ments. Instantons are therefore not present in the ground
state. For vortices, the situation is different. Let us consider
solutions of the Laplace equation r2� � 0 of the form
�v�r� �

PM
j�1 Qj arg�x� Xj 
 i�y� Yj�	. Here Rj �

�Xj; Yj� and Qj 2 Z are the positions of the defects and
their topological charges (winding numbers), respectively.
The energy is minimal for vanishing total topological
charge with Qj � 1. In this case, we have M=2 pairs of
vortices with opposite winding numbers. For large average
separation between vortices, R� 1, the associated energy
calculated with logarithmic accuracy is [21]

 EV � M��s lnR: (5)

Because this energy is positive, vortices never appear in the
ground state of the NLSM without impurities. However, in
a doped system, one also has to take into account the
interaction energy EIV between impurities and vortices.
From Eq. (2), we find

 EIV � 2�sM
XN;M
i;j�1

liQj
ea � �ij
�2
ij

�1� e�2��ij�1
 2��ij�	;

(6)

where �ij � �Rj � ri� are the positions of the vortices
with respect to the impurities. The interaction energy (6)
is large and negative because of the domains formed in the
spin-glass phase in which all pseudospins point in the same
direction. It therefore favors the creation of vortices at zero
temperature. The total energy is now given by the sum of
Eqs. (4)–(6). An illustration of a system with one vortex-
antivortex pair is shown in Fig. 1(b). Compared to the same
realization without defects [Fig. 1(a)], the energy is around
10% lower. The presence of vortices renders the problem
of finding the ground state quite difficult. In addition to
minimizing the energy of the Ising pseudospins, one also
has to check if vortex-antivortex pairs can lower the en-
ergy, and if so, optimize their positions. Nevertheless, it is
possible to estimate the optimal distance between defects
in the thermodynamic limit. Because of the long-range
nature of the interaction (6), the energy gain is proportional
to R. Let us denote the energy of the system without
vortices by E � EI and use ~E � ~EI 
 EIV 
 EV for a
system with M defects. The energy gain due to vortices
can then be expressed as �E � ~E� E � �	xMR

M��s lnR. By comparing the energies of systems with 4
and 16 vortices to the same realizations without defects, we
find that the parameter 	 is weakly doping dependent.
At x � 0:02, we obtain 	 � 2:0, leading to an optimal
distance Ropt � 130 in the thermodynamic limit and at

 

FIG. 2. (a) hnbi as a function of doping x. For � � 0:4, Néel order is destroyed at xc � 0:02, in agreement with experiments. For
pointlike impurities (�! 1), there is no phase transition at least up to x � 0:05. (b) Neutron scattering probability Sq for x � 0:04.
Dots correspond to experimental observations taken from Fig. 4 in Ref. [6], with normalized intensities. The curve represents our
simulation, containing no fitting parameters. (c) Incommensurability 
 (in reciprocal lattice units of the tetragonal lattice) as a function
of doping. Our calculations (dots) are in good agreement with experimental measurements (squares) taken from Ref. [3,5,24], see
Fig. 6 of Ref. [3]. Theoretical points for the Néel phase are taken from Ref. [14].
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x � 0:05, we find 	 � 1:1 from which we deduce Ropt �

90. We thus conclude that vortex-antivortex pairs break up
the domains and lead to a parquetlike arrangement of Ising
pseudospins with a natural domain size R � 100.

Interestingly, there is no irreversible glassy behavior in
this spiral state. Although one could think that glassiness is
due to the long-range character of the interaction, we have
checked that changing the boundary conditions or the size
of the system only has a marginal influence on the energy.
In principle, the irreversibility could also arise from topo-
logical defects; however, this is unlikely because of their
very high energy. The state we have found is therefore not a
proper glass and we believe that the commonly used ‘‘spin-
glass’’ term does not reflect the most important properties
of this state. This claim is supported by experimental
observations: While the incommensurate structure is al-
ready observed below 30–40 K, the irreversible glassy
behavior only sets in below T � 5–6 K [22] and is in our
opinion due to the interlayer interaction that leads to a
freezing of incompatible spiral configurations in neighbor-
ing planes.

Static spin structure factor and neutron scattering.—Let
us finally calculate the structure factor Sq �
1
L2

P
ij;�e

iq��ri�rj�n��ri�n��rj�, which is related to the neu-
tron scattering cross section. Figure 2(b) shows experimen-
tal data taken by Fujita et al. [6] on a sample with doping
x � 0:04 together with our theoretical results for Sq. The
agreement between theory and experiment is quite remark-
able, especially given the fact that it is not restricted to a
particular sample, but can be observed over a broad range
of doping. This latter finding is illustrated in Fig. 2(c),
which shows the incommensurability 
, defined as half the
distance between the peaks, as a function of doping.
Expressed in reciprocal lattice units of the tetragonal struc-
ture, the incommensurability is in good approximation
proportional to doping, 
 � x. Because of their low den-
sity, topological defects do not have a major influence on
Sq and only lead to some broadening of the peaks.

To conclude, we have developed the effective low-
energy field theory that describes the magnetic structure
of La2�xSrxCuO4 in the spin-glass phase (x & 0:055). We
have shown that the staggered component of the copper
spins is confined to the ab plane, due to the XY anisotropy.
The static spin structure factors obtained in our approach
are in excellent agreement with neutron scattering data,
over a whole range of doping. We have analyzed the
transition from the Néel to the spin-glass phase, which is

similar to that of a ‘‘Lifshitz point’’ separating two mag-
netically ordered phases [11,23] and we have shown that
topological defects (spin vortices) play a significant role in
the ground state of the spin-glass phase.
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