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We show that the joint effect of spin-orbit and magnetic fields leads to a spin polarization perpendicular
to the plane of a homogeneous two-dimensional electron system with Rashba spin-orbit coupling and in-
plane parallel dc magnetic and electric fields, for angle-dependent impurity scattering or nonparabolic
energy spectrum, while only in-plane polarization persists for simplified models. We derive Bloch
equations, describing the main features of recent experiments, including the magnetic field dependence
of static and dynamic responses.
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Generating spin populations at a nanometer scale is one
of the central goals of spintronics [1]. Using spin-orbit
interaction promises electrical control, allowing to inte-
grate spin generation and manipulation into the traditional
architecture of electronic devices. Bulk spin polarization,
driven by electron drift in an electric field, was predicted
long ago for noncentrosymmetric three- (3D) and two-
dimensional (2D) systems [2–7]. In 2D, the polarization
is in-plane, typically along the effective spin-orbit field
bdr � hbSO�k�i � 0, obtained by averaging spin-orbit cou-
pling over the distribution of electron momenta @k [8]. In-
plane polarization components were observed recently in
p-GaAs heterojunctions [9], quantum wells [10], and
strained n-InGaAs films [11]. Below, we propose a mecha-
nism for out-of-plane spin polarization generated in a
homogeneous system by applying an in-plane magnetic
field B. This perpendicular polarization allows efficient
optical access, e.g., via Kerr rotation. We find that the
use of an average field bdr is not always valid. Naively,
one might consider the system as being subject to a total in-
plane field hbi, given by the sum of B and bdr, see Fig. 1(a).
In steady state, one then expects electrons to be polarized
along this total field; in particular, no polarization perpen-
dicular to the (bdr, B) plane. Algebraic addition of these
fields worked well in describing Hanle precession of opti-
cally oriented 2D electrons in GaAs [12]. However, Kato
et al. [11] reported a perpendicular spin polarization,
which is incompatible with such a naive picture, and
emphasized the need of identifying its microscopic mecha-
nisms. A similar polarization was found in ZnSe [13].

The out-of-plane spin polarization in homogeneous sys-
tems, which we consider here, may be contrasted with the
‘‘spin Hall effect,’’ which can generate out-of-plane polar-
ization only near sample edges [14] or in inhomogeneous
systems. That effect can arise when an electric field in-
duces a transverse spin current in the bulk of the sample
[15,16]. However, it turns out that there is no bulk spin
current, when B � 0, for the linear-in-momentum Rashba
spin-orbit coupling, considered here [17–24]. This result
holds even in the case of anisotropic impurity scattering
[25].

In this Letter, we develop a theory describing the inter-
play between spin-orbit interaction and external electric
and magnetic fields in the presence of impurity scattering,
and demonstrate that the concept of average spin-orbit field
is subject to severe restrictions. The naive expectation turns
out to be correct only in the special case of parabolic bands
and isotropic impurity scattering. However, as we show
below, for anisotropic scattering (e.g., small-angle scatter-
ing), correlations in k result in a more complex structure of
the distribution function and an out-of-plane spin polariza-
tion. Concretely, the Bloch equation contains a generation
term proportional to bdr �B whose magnitude is con-
trolled by anisotropy of potential scattering and nonpara-
bolicity of the energy spectrum. Remarkably, while
anisotropic scattering does not change the symmetry of
the Hamiltonian, a perpendicular polarization would also
be allowed by symmetry in the special case, but it is absent
due to a cancellation. Our results give a microscopic
explanation of experiments [11] and provide a novel

 

FIG. 1 (color online). (a) Field geometry for g�B > 0, �< 0.
Out-of-plane spin polarization is electrically generated with rate
�z due to interplay of spin-orbit interaction, external electric
field E and magnetic field B, and anisotropic impurity scattering.
The polarization precesses (curved arrow) in g��BB� hbSOi.
(b) Dynamics of out-of-plane component of polarization gener-
ated by a short electrical pulse of length tp & 1 ns, for �0 �

0:03, g� � 0:65 and �z � 5 ns. This pattern is in agreement with
the experimental data of Fig. 4(c) in Ref. [11].
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mechanism for generating spin polarization electrically via
spin-orbit interaction.

We consider a model of 2D electrons with charge e < 0
and (pseudo-) spin 1

2 , obeying a Hamiltonian

 H � �k �
1

2
b�k� � � � V�r�; (1)

where �k is the dispersion law in the absence of spin-orbit
coupling, V�r� is the potential due to impurities, Vi�r�, plus
a small electric field E, � are the Pauli spin matrices, and
b�k� includes both intrinsic spin-orbit field bSO�k� and in-
plane external field B. We disregard electron-electron in-
teraction. In the following, we study the spin polarization
density s�r� � h�in2D. Here, n2D is the electron density
and we set @ � 1.

Kinetic equation.—For a bulk 2D system with only
intrinsic spin-orbit interaction, the kinetic equation has
been derived [6,26,27]. Following Ref. [27], we may write
a spin-dependent Boltzmann equation for the distribution
function, represented as a 2� 2 spin matrix f̂ � f̂0�k� �
1
2 fc�k�1� f�k� � �, with equilibrium distribution function
f̂0, excess particle density fc, wave vector k � �kx; ky� �
�k cos’; k sin’�, and spin polarization density described by
f. Magnetic field and spin-orbit coupling split the energy
spectrum into two branches: for a given energy �, there are
two Fermi surfaces. Thus, for elastic scattering, energy � is
conserved but jkj is not, e.g., due to interbranch scattering.
Instead of using the distribution function f̂�k� as density in
k space, we consider it as a function of energy � and
direction ’ in k space. In this representation, fc�k; ��
and f�k; �� are transformed into distribution functions
n�’; �� and ��’; ��, respectively; for a detailed derivation,
see Ref. [27]. The spin-dependent part of the kinetic equa-
tion for E � Ex̂ is [27]
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The second term on the left-hand side (lhs) of Eq. (2)
describes the spin precession in the momentum dependent
field b, and the third term is the driving term, given in
lowest order in E with � � �eE=16�2v����@f0=@�� and
Fermi distribution function f0. Equation (2) was derived
for b	 EF and should be evaluated at k � k�, where k� is
such that �k� � � and the spin-independent velocity con-
tribution is v� � �0k. Further, the kinetic equation for the
charge distribution is the same as for b � 0, with solution
n � 8��v�k cos’, where � is the transport lifetime. The
collision integral on the right-hand side (rhs) of Eq. (2) was
found in Born approximation by golden rule. In the ab-
sence of b, it is given by the usual relaxation termR

2�
0 d’0K�#�
��’0� ���’��, with kernel K�#� �
hjVi�q�j2ik=2�v�, scattering angle # � ’0 � ’, and mo-
mentum transfer q � 2k sin�j#j=2�. Coupling of spins via
b leads to two corrections to the collision integral, arising
from the spin dependences of the density of states and

momentum transfer for a fixed energy �. These contribu-
tions are proportional to K�#� and ~K�#� � �dK=d#��
tan�#=2�, respectively [27,28]. Like the third term on the
lhs of Eq. (2), these are source terms, proportional to �,
which do not involve �. Note that ~K is a distinctive feature
of anisotropic scattering.

We now consider Rashba spin-orbit interaction, and
choose the x axis along the field B, i.e.,

 b �k� � 2�ẑ� k� �xx̂; �x � g��BB; (3)

with Zeeman splitting �x. Thus, b�k� is in-plane and E and
B are parallel, see Fig. 1(a). (For E � Eŷ there is yzmirror
symmetry and sz vanishes. Therefore, the sz term linear in
E is determined only by the component Ex parallel to B.)

The effective field b�k� for a 2DEG with pure linear
Dresselhaus coupling, on the (001) surface of a III-V
material, is obtained by replacing k on the rhs of Eq. (3)
by q �Rk, where R denotes reflection through the (110)
crystal plane. Our results for the polarization sz (see below)
can be applied to this case if we replace Ex by the compo-
nent of the electric field along the direction B0 �RB. For
general forms of the spin-orbit coupling, we note that the
C2v symmetry of the system ensures that if B � 0, there
can be no term in sz linear in E. However, there could be
terms nonlinear in E, if E is not parallel to a symmetry
direction [110] or 
1�10�, e.g., sz / E2

x � E
2
y where x refers

to the [100] crystal axis, which would then give an all-
electrical mechanism for generating out-of-plane spin
polarization.

Next, we write the kinetic Eq. (2) in Fourier space by
expanding the azimuthal dependence as f�’� �P
1
m��1 e

im’fm. We assume that B is time independent
and any time dependence of E is slow compared to ��1.
Combining the in-plane spin distribution as �x�’� �
i�y�’� �

P
me

im’�m, and inserting Eq. (2) we find [28]
 

_�m � i�x�
z
m � 2�k�z

m�1 � 4ik2�k��m;2

� �x��1� �0��jmj;1 � ��1km�m; (4)

 

_� z
m � i

�x

2
��m ����m� � �k��1�m ���1�m�

� �k�x���2�m;0 � �jmj;2� � ��1km�z
m; (5)

with inverse transport time ��1 � 2��K0 � K1� and km �
�K0 � Km�=�K0 � K1�. Finally, we define

 �0 � 	 � 2
~K1 � ~K0

K0 � K1
; (6)

parametrizing how scattering in the magnetic field leads to
spin-dependent corrections to the collision integral. The
first term in Eq. (5) is the band nonparabolicity 	 �
�k=v���@v�=@k� � 1, i.e., 	 � 0 for parabolic bands. The
second term quantifies the effect of anisotropic scattering.
In the limit of small-angle scattering, we find �0 � 	 � 3.

Isotropic scattering, parabolic bands, stationary re-
gime.—First, we assume isotropic scattering and parabolic
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bands, thus km � 1� �m;0, ~Km � 0, and �0 � 0. In this
regime, we solve the kinetic equations (3) and (4) exactly
in the static case @�=@t � 0. The stationary solution is

 �is
m � �x���jmj;1 � 4i�k����m;0 � �m;2�; (7)

 �z;is
m � 0; (8)

which can be checked by inspection. The total spin polar-
ization density is s � seq � sE, with equilibrium contribu-
tion seq k B and nonequilibrium contribution
sE� � 4�

R
d���

0 . Thus, the out-of-plane polarization van-
ishes, sz � 0, as one would expect from the above naive
argument—even though the symmetry allows sz � 0.
Hence, vanishing sz is a property of the specific model of
isotropic scattering and parabolic bands.

Now we are in a position to develop a physical picture of
the different mechanisms generating spin polarization.
Polarization sx arises from Pauli paramagnetism seq

x �
1
2
�x, with the density of states 
 � kF=�vF � m�=�,
Fermi momentum kF, Fermi velocity vF, and effective
mass m�. This spin polarization does not depend on the
electric field, thus �x

0 � 0. However, the electric field
causes drift, producing an average spin-orbit splitting,
bydr�hbyi��1=n2D�

RR
d�d’nby�2�eEx�. From Eq. (6),

we find sEy � �eEx�
, in agreement with results known for
B � 0 [3,5–7,17]. Because sEy �

1
2
hbyi, we can under-

stand that sy is produced by the drift field hbyi, in analogy
to Pauli paramagnetism. Therefore, for isotropic scattering
and parabolic bands, the in-plane polarization can be de-
scribed in terms of the average spin-orbit field. Remark-
ably, even for this model, our solution is ��’� �
4��
b�’� � 1

2 �xx̂� cos’, i.e., in addition to the total field
b, there is a correction � 1

2 �xx̂. Thus in ��’� the spin-
orbit and external magnetic fields cannot be added.
However, this correction does not contribute to the spin
polarization.

The vanishing of the perpendicular polarization sz re-
sults from a cancellation of precession terms, as given by
Eq. (4), for m � 0. The first term on the rhs describes the
precession of sy (induced by bydr) in the magnetic field B,
producing an out-of-plane polarization. However, this po-
larization is exactly canceled by the second and third
terms, which describe the precession of the equilibrium
polarization (induced by B) in the field bdr / �k. Also,
note that the third term in Eq. (5), which results from the
b� �@b=@k� contribution to the kinetic Eq. (2), is impor-
tant for the cancellation, and, in particular, does not lead to
a finite sz.

Anisotropic scattering and Bloch equation.—Now we
consider anisotropic scattering and/or nonparabolic bands,
and also include transients. We consider the ‘‘dirty limit,’’
2j�jk	 ��1 	 EF with constant B such that

 j!j; ��1
z ; j�xj 	 2j�jk	 ��1: (9)

Here, ! is the characteristic frequency of the field E,

and �z �
1
2 �xy � ��1�2�k��2 are the Dyakonov-Perel

spin relaxation times. In this regime, �z
m and �m decay

exponentially fast with increasing jmj, since �z
m=�z

m�1 
�2j�jk�x 	 1 for m � 2, and similarly for �m. This
allows us to solve kinetic equations (3) and (4) order-by-
order in the small parameter ��=�z�1=2. In lowest nonvan-
ishing order, it is sufficient to retain only equations for
jmj � 2. Eliminating the m � �1, �2 components yields
the equations of motion for � up to order ��=�z�1=2 [28].

Finally, we evaluate the equations of motion for the total
polarization s at low temperature T, taking all parameters
at the Fermi level. We obtain the Bloch equation

 

_s � hbi � s� �
$�1
s s� �; (10)

where the spin relaxation tensor �
$�1
s is diagonal with

components f��1
xy ; ��1

xy ; ��1
z g and

 � � �12
�x��1
xy ;

1
2
hbyi�

�1
xy ;

1
4
�xhbyi�0�: (11)

Note that our proof of Eq. (10) is valid only in linear order
in E [cf. Eq. (2)], i.e., products hbyisE� were disregarded.

To develop a physical picture for this central result, we
note that Eq. (10) is a Bloch equation, where polarization s
is generated with a rate � and then precesses in the total
field hbi � g��BB� bdr (Hanle effect). What is remark-
able is that for anisotropic scattering and/or band nonpar-
abolicity, the combined effect of spin-orbit and exter-
nal fields generates a component of spin polarization along
the z axis with rate �z �

1
4
g

��B�B� hbSOi�z�0 �
1
2
�eEx��x�0, i.e., perpendicular to both magnetic and
spin-orbit fields. The physical mechanism for this may be
understood as follows. Because of the Zeeman field, there
will be different Fermi radii, k" and k#, for spins aligned
parallel and antiparallel to the x direction, in the absence of
spin-orbit coupling. The electric field causes a net drift in
the x direction, and in the case of anisotropic scattering, the
scattering rates for k" and k# will be different, because of
different momentum transfers. This leads to a ’-dependent
x polarization, which is given by the term proportional to
�0 in Eq. (4). [The similar term �x��jmj1 is not due to
scattering; it describes the acceleration in the electric field
and contributes to the cancellation explained above.] On a
time scale of �, this polarization then precesses around the
y component of bSO, as described by the second term of
Eq. (5). Because by / kx, the precession frequency de-
pends on’; so if the spins initially aligned along B precess
faster (say, because they are predominantly scattered in the
forward direction) than the antialigned spins, these two
precession contributions do not cancel (even when aver-
aged over ’) and a finite sz polarization is produced.

Next we consider the dc case _s � 0. In the lowest order
in E, the total spin polarization is sx �

1
2
�x,

 sy �
1

2

�eEx�

�
2�

�2
x�xy�z

1��2
x�xy�z

�0

�
; (12)
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 sz �
1

2

�eEx�

�x�z
1��2

x�xy�z
�0: (13)

The first term of Eq. (12) arises from Eq. (7), while the
second term and sz are due to anisotropic scattering or
nonparabolic bands. The dependence of sz on �x is in
agreement with the data in Fig. 1(c) of Ref. [11], where
�s � ��xy�z�

1=2 � 5 ns, suggesting that our microscopic
model might explain the experimental observations.

Spin dynamics.—Even for isotropic scattering �0 � 0,
a time-dependent electric field leads to an out-of-plane
polarization sz�!� �

i
2!
�xb

y
dr�!�=
�

2
x �!2 � ��2

s �

i���1
xy � ��1

z �!�; however, it has no static component
sz�0�. Similar results were found for j�jk	 �x, ��1 [29].

Spin dynamics is accessible in a pump-probe scheme
[11]. Namely, spins can be pumped by applying a short
electric pulse of duration tp 	 �z, ��1

x . Then, according to
Eq. (10), the spin polarization immediately after the pulse
is sz�0� � tp�z / �x�0, i.e., sz�0� is an odd function of �x.
Solving the Bloch equation (10), we get

 sz�t� � sz�0�e�3t=4�z

�
cos�t�

1� 2=�0

4��z
sin�t

�
(14)

with frequency � �
����������������������������
�4�x�z�

2 � 1
q

=4�z of the Hanle os-
cillations (for consistency, we only consider terms linear in
E). We plot sz�t� in Fig. 1(b), taking the parameters of
Ref. [11] and with a choice of �0 � 0:03, and find quali-
tative agreement with the experiment. The experimental
data show that the sign of sz depends on the sign of �x,
already on time scales much shorter than j�xj

�1. There-
fore, the sign of sz cannot be due to spin precession in the
external magnetic field, implying that a polarization gen-
eration mechanism such as the one described above was
experimentally observed in Ref. [11].

Strictly speaking, quantitative comparison with the data
of Ref. [11] cannot be performed because the films were of
low mobility EF� 1, violating the assumptions of our
Boltzmann description, and were in 3D regime (a coupling
ky�x � kx�y occurs here due to strain). Furthermore, in
models with a more complicated spin-orbit interaction than
the Rashba coupling, other sources of z polarization might
become important. However, Eq. (9) was satisfied, because
@=�z  3� 10�8 eV; j�xj & 10�6 eV; jb�j  10�5 eV;
and @=� 2� 10�3 eV [11,30].

In conclusion, we proposed a mechanism for generating
bulk spin populations polarized perpendicularly to mag-
netic and spin-orbit fields; for 2D systems this is an out-of-
plane polarization. It relies on anisotropic impurity scat-
tering and/or band nonparabolicity and provides a new
method for electrical control of electron spins. Our model
is derived for 2D systems, but the results should have a
more general validity, and they agree with recent observa-
tions of combined effects of the external magnetic and
spin-orbit fields in 3D samples.
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