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Motivated by several experimental activities to detect charge noise produced by a mesoscopic
conductor with a Josephson junction as on-chip detector, the switching rate out of its zero-voltage state
is studied. This process is related to the problem of thermal escape in presence of non-Gaussian
fluctuations. In the relevant case of weak higher than second order cumulants, an effective Fokker-
Planck equation is derived, which is then used to obtain an explicit expression for the escape rate. Specific
results for the rate asymmetry due to the third moment of current noise allow to analyze experimental data
and to optimize detection circuits.
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A complete understanding of electronic transport
through mesoscopic conductors necessitates the knowl-
edge of all noise properties of the corresponding current.
This is the goal of full counting statistics, which has
attracted considerable activity in recent years [1,2].
Theoretically, generating functionals of current noise in
the low frequency limit have been calculated for a variety
of systems comprising tunnel contacts, diffusive wires, and
ballistic cavities [2]. Experimentally, in a pioneering mea-
surement the third moment of current noise produced in a
tunnel junction was detected by analog amplifiers and
filtering techniques in [3] and later also in [4]. Since then
strong efforts have been made towards on-chip detection
schemes, first because they are faster and second because
they give access to finite frequency noise properties.
Lately, the distribution of charges flowing through a quan-
tum dot have been extracted on-chip in the low frequency
regime [5]. The goal now is to push devices into higher
frequency ranges (GHz), where quantum effects, electron-
electron interactions, and plasmon dynamics are relevant.

Based on an idea proposed in [6] and studied later in
various scenarios [7,8], currently, several experiments are
aiming to set up circuits with Josephson junctions (JJs) as
detection elements [9–11]. JJs can be fabricated and ma-
nipulated in a very controlled way, offer a large bandwidth
depending on their plasma frequency, and contain an in-
trinsic amplification mechanism. Namely, the switching
out of the zero-voltage state is exponentially sensitive to
variations of the barrier potential and to the noise strength.
For electrical noise large positive and negative fluctuations
from the mean occur with different probabilities. The idea
is thus to probe this asymmetry by measuring switching
rates for mean mesoscopic currents flowing forward and
backward, respectively. Indeed, recent experimental results
[11] indicate a sufficient sensitivity of such a circuit to
retrieve the third cumulant.

A typical setup [10] consists of a JJ, on which two
currents Ib and Im are injected. Current Ib is a standard
bias current coming from a source in parallel to the JJ,

while Im runs through a noise generating mesoscopic con-
ductor in series with the JJ in such a way that no dc
component of Im passes through the detector. Because of
substantial heating from the additional electrical noise the
JJ operates in the regime of classical escape, where quan-
tum effects are negligible. Then, according to the resis-
tively and capacitively shunted junction model, the phase
’ of the JJ moves in a tilted washboard potential
�EJ cos�’� � �@=2e�hIbi’ with Josephson energy EJ
and is subject to Johnson-Nyquist noise �Ib � Ib � hIbi
and stationary non-Gaussian current fluctuations �Im �
Im � hImi. If the phase is initially trapped in one of the
wells (zero-voltage state), it may for sufficiently large
hIbi< Ic � �2e=@�EJ escape so that the JJ switches to a
finite voltage state. Further, since the third cumulant van-
ishes in equilibrium due to time-reversal symmetry, experi-
mentally, the mesoscopic conductor is at low temperatures
driven far from equilibrium into the shot noise regime,
where no fluctuation-dissipation theorem applies. Hence,
the switching of the JJ can be visualized as the diffusive
dynamics of a fictitious particle in a metastable well with
non-Gaussian continuous fluctuations acting as external
random driving force.

In the past JJs have been used to thoroughly confirm
various theories for thermal escape [12,13] including cases
of external driving either by time-periodic forces or
Gaussian noise sources related to phenomena such as
resonant activation [14,15] and stochastic resonance [16].
When putting the experimental situation described above
into this context, one arrives at a new type of rate problem:
thermal escape driven by non-Gaussian continuous noise.
Theoretically, the challenge here is that externally driven
escape necessitates a full dynamical description because
the stationary well state from which particles are ejected
over the barrier is only known a posteriori. In the classical
domain and for Gaussian noise processes a dynamical
formulation is based on a Fokker-Planck equation (FPE)
for the phase-space distribution as shown, e.g., in [13,17].
Thus, the first goal is to derive a generalized FPE for weak
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non-Gaussian noise, which then serves as a basis for the
rate calculation. A solution to this problem is of general
interest for rate processes in complex media and crucial for
present electrical noise measurements because non-
Gaussian components are typically very small compared
with a prevailing Gaussian background. In this Letter we
develop the framework for such a rate theory and give
explicit expressions in case of a JJ as detector.

For this purpose let us consider the Langevin equation
for the diffusive motion of a particle of mass m

 m �’�t� � V 0�’� � ��t� �m� _’�t� � ��t�; (1)

where ’ denotes a generalized coordinate, the overdot
represents d=dt, and the prime represents d=d’. The bar-
rier potential V�’� is assumed to be sufficiently smooth
with a well located at ’ � 0 with frequency !0 ��������������������
V 00�0�=m

p
and a barrier top at ’ � ’b with frequency

!b �
�������������������������
jV 00�’b�j=m

p
and height Vb � V�’b� � V�0�. The

white thermal Gaussian noise obeys h��t�i� � 0 and is
related to the damping � via the dissipation fluctuation
theorem: h��t���t0�i� � �2m�=����t� t0� with inverse
temperature � � 1=kBT. The statistical properties of the
stationary non-Gaussian noise are determined by the gen-
erating functional

 e�S�w�s�� �
�
T exp

�
i
Z t

0
ds��s�w�s�

��
; (2)

where T is the time ordering operator and the cumulants
are gained from the functional derivatives of S�w�. In par-
ticular, we assume S1�t�� h��t�i� i@S�w�=@w�t�jw�0�0,
while the autocorrelation function reads

 S2�t� � h��t���0�i � @2S�w�=@w�t�@w�0�jw�0

and the third cumulant follows accordingly as

 S3�t; t0� � h��t� t0���t0���0�i:

Now, particles initially confined in the well region may
escape such that for sufficiently high barriers (�Vb � 1) a
stationary flux appears related to an escape rate � �
hv��’� ’b�iflux=Nwell. The denominator is the population
in the well and the expectation value of v � _’ is taken with
respect to a quasistationary nonequilibrium state, the flux
state, which may be cast into the form

 Pflux�v;’� � Pequi�v;’�fflux�v;’�: (3)

Here Pequi denotes the equilibrium distribution and fflux

describes deviations from it such that it tends to 0 towards
the continuum and to 1 towards the well. The flux state, as a
phase-space density, is obtained as a stationary solution to
the Fokker-Planck equation (FPE) corresponding to (1). In
case of vanishing non-Gaussian noise, ��t� � 0, the latter
one reads @tP�v;’; t� � L0P�v;’; t� where

 L0 � �v@’ � @v�V
0�’�=m� �v� � �=�m��@2

v: (4)

Then, from L0Pflux � 0 one finds for moderate to strong

friction the known expression [13] � � �!0�=2��	

exp���Vb� with the scaled Grote-Hynes frequency � �

��=�2!b� �
�����������������������������
��=2!b�

2 � 1
p

.
For finite non-Gaussian noise the translation of (1) into

an equivalent FPE for the averaged phase-space distribu-
tion leads to only formal expressions [17,18]. Here, in
accordance with the experimental situation we proceed
by assuming that (i) non-Gaussian fluctuations are weak
and (ii) sufficiently fast compared to the bare dynamics of
the system (detailed conditions will be given below). Then,
one considers Veff � V � ’��t� as an effective time-
dependent potential so that for each realization of the
non-Gaussian random force a FPE for P��v;’; t� exists
where L0 is replaced by L0 � ��t�=m@v. To gain a FPE for
the averaged distribution hP��v;’; t�i, we switch to the
interaction picture P��t� � exp�L0t�Q��t� with @v�t� �
exp��L0t�@v exp�L0t�. By averaging the equation for
Q��t� over the � noise, the exact solution is expressed in
terms of the generating functional with the counting field
w�s� substituted by �i=m�@v�s�, i.e.,

 hQ��t�i � e�S��i=m�@v�s��Q�0�

� T exp
�Z t

0
ds
X
k
2

Ck�s�

mk

�
Q�0�: (5)

Here, we have used the cumulant expansion of
S��i=m�@v�s�� with Ck�s� � exp��L0s�Ĉk�s� exp�L0s�,
where the two lowest order cumulant operators read
 

Ĉ2�s��
Z s

0
duS2�u�@v@v��u�

Ĉ3�s���
Z s

0
du
Z s�u

0
du0S3�u;u0�@v@v��u�@v��u�u0�:

The above result reveals that the generator for the averaged
dynamics is directly given by the generating functional of
the non-Gaussian noise. Its cumulant expansion now al-
lows for a systematic approximation.

To do so, we take only the two leading order terms into
account in (5), which in turn leads to @thP�i �
�L0 � Ĉ2�t�=m2 � Ĉ3�t�=m3�hP�i. While this FPE applies
to weak non-Gaussian noise of an arbitrary type, following
assumption (ii), the noise correlation functions vanish on a
sufficiently short time scale so that the non-Markovian
dynamics reduces effectively to a Markovian one. In this
way, one arrives at a generalized FPE of the form @thPi �
LeffhPi with

 Leff � L0 � �c2=m2�@2
v � �c3=m3�@3

v (6)

where

 c2 �
Z 1

0
duS2�u�; c3 �

Z 1
0
du

Z 1
0
du0S3�u; u0�:

Note that this expression generalizes previous results ob-
tained in the overdamped limit [18]. If the external noise
were purely Gaussian, i.e., c3 � 0, the operator Leff were
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exact. Hence, what we really have to assume are small
higher than second order cumulants, while c2 may be large.
Thus, one introduces an effective temperature

 Teff � T � c2=�kBm�� (7)

and incorporates the Gaussian components of the non-
Gaussian noise into a renormalized diffusion term accord-
ing to L0��� � �c2=m

2�@2
v ! L0��eff�. We note in passing

that this expression coincides with the one derived for
resonant activation [14]. Experimentally, the heating due
to c2 is substantial so that (7) is required to capture the
actual temperature of the JJ.

With the generalized FPE at hand we now attack the rate
calculation. For this purpose, it is convenient to work with

dimensionless quantities � � !0t, x � ’
������������������
�effm!

2
0

q
, p �

v
������������
�effm
p

,U � �effV, and � � �=!0, �c3 � c3��eff=m�3=2;
then xb, Ub � 1 and �c3 serves as a small parameter. We
start with the equilibrium state (no flux) which determines
the dominating exponential activation factor in (3) and
write Pequi / P�eff

exp�� �c3G� with the Boltzmann distri-
bution P�eff

. Upon inserting this ansatz into LeffPequi � 0
we find perturbatively a distribution of the form

 G�x; p� � 	0�x� �
X3

n�1

	n�x�pn=n; (8)

where coordinate dependent functions can be expressed in
terms of only 	2 as

 	1�x� � ��	2�x�=U0�x� � �	3�x�;

	0�x� � 3x� 3�
Z x

0
dy	1�y� �

Z x

0
dyU0�y�	2�y�:

(9)

Note that the property 	1 � �	3 ensures that hpiequi � 0
in leading order. While the above expressions hold in
general, the solution of 	2 depends on the specific form
of the potentialU. To better understand the deviations from
the thermal equilibrium we thus first study a harmonic
potential U�x� � x2=2, which approximates a metastable
potential around its well minimum. The result is 	2�x� �
�2x=�1� 2�2� and the corresponding distribution Pequi

has a simple interpretation: it coincides with the thermal
distribution driven by the external force ��t� and averaged
in the long time limit over the non-Gaussian noise.
Specifically, one has Pequi�p; x� � lim�!1hP�eff

�p�; x��i,
where p� � p� _f��� and x� � x� f��� with f��� ����������������������
�eff=m!2

0

q R
1
0 d�

0
��� �0����0� and 
��� the response
function for a damped harmonic oscillator. As a conse-
quence, Pequi�p; x� shows an asymmetry even for a sym-
metric potential depending linearly on the third cumulant
S3. In contrast, in a setup where for the � noise a dissipa-
tion fluctuation theorem applies, a linear dependence on
odd cumulants occurs only on a transient time scale [8].

A generic metastable potential is of the form U�x� �
�x2=2��1� 2x=3xb� describing particularly a well-barrier
segment of a tilted washboard potential of a JJ. Then,

 	2�x� � �
2xbz�1� z�

a

1� a 2F1�a; 1� a; 2� a; z�; (10)

where z � x=xb, a � 2�2, and Pequi follows together with
(9). There is a little subtlety here in that the solution (10)
applies for 2�2 < 1 only outside a narrow range around xb.
The global solution is then constructed by properly match-
ing the local solution around xb onto the latter one. Since
the vicinity around the top affects only the prefactor and
not the experimentally dominant exponential factor of the
rate, we will give further details elsewhere. This exponen-
tial activation factor can now be inferred from Pequi�p �
0; x � xb� and is obtained as � / exp��Ub�1� g�� with
the third cumulant correction g � � �c3	0�xb�=Ub explic-
itly evaluated as

 g��� �
6�c3

5�2 � 1

Ub

xb
: (11)

The remaining prefactor to the rate is determined by fflux in
(3) and the well population Nwell. The latter one is easily
calculated from Pequi�p; x� around the well bottom, while
the former one is derived from the local dynamics around
the barrier top. Eventually, the rate is found as

 � �
!0�

2�

�
1�

����
�
2

r
�c3	

0
2�xb�

�2��

9� 2�2

�
e�Ub�1�g�; (12)

where � � 2��9� 4�2� � ��8�2 �
��������
��

p
�7� 2�2�� � 4

and 	02�xb� results for 2�2 � 1 from the matching proce-
dure leading, e.g., for 2�2 
 1 to 	02�xb� � 1=�2. The
above expression is the main finding of this Letter, namely,
the thermal escape rate out of a metastable well in the
presence of weak ( �c3 
 1=Ub) and fast (correlation time
�c 
 1=!0) non-Gaussian continuous noise. This result
indeed verifies that the detector transforms the noise asym-
metry into a rate asymmetry depending on the sign of the
third cumulant �c3. For �c3 > 0�<0� the noise distribution
favors large positive (negative) fluctuations so that the
barrier is effectively reduced (enhanced) and the distribu-
tion in the metastable potential develops a tail towards
large positive (negative) momenta and coordinates causing
a rate increase (decrease).

In the sequel, the general result (12) is applied to a
circuit, where a JJ acts as detector for the current noise
produced by a normal tunnel junction subject to a voltage
V in the shot noise regime eV � kBT. Further, eV=@�
!0 guarantees that the noise is much faster than the plasma
frequency !0 � �

��������������
2EJEC
p

=@��1� s2
b�

1=4 (sb � Ib=Ic) of
the JJ with charging energy EC � 2e2=C (capacitance C)
and that its back action onto the tunnel junction is negli-
gible. Then, the current statistics is purely Poissonian:
during a (scaled) time interval �p an average number of
N charges passes the conductor so that sm � hIm=Ici �
Ne!0=��pIc� and S3��; �0� � ���� �0������e!0=Ic�2sm.
The procedure to extract the third cumulant is to measure
switching rates with bias currents sb (or equivalently meso-
scopic currents sm) flowing forward and backwards, re-
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spectively [11]. This way, one finds for the rate asymmetry
R� � ��jsbj�=���jsbj� as the dominant contribution R� �
exp�2Ubg�jsbj��. In the case considered here the result for
this asymmetry expressed in junction parameters reads

 R� � exp
�

4
���
2
p
�3

effECE
2
JQ

2

3�5�Q2�

sm�1� jsbj�2�����������������
1� jsbj

p
�
; (13)

with the quality factor Q � 1=� and the effective tempera-

ture Teff � T �Q@!0sm=�4kB
��������������
1� s2

b

q
�. Note that in the

exponent the ratio between third cumulant and Gaussian
noise basically appears via E2

J�
2
effsm so that R� ! 1 for

increasing sm. The above finding not only allows to under-
stand experimental data, but may be used to optimize the
detection circuit as well. Namely, as a function of Q, the
asymmetry R� exhibits a maximum for intermediate Q
values, but decreases towards higher (underdamped) and
lower (overdamped) ones (Fig. 1). This also reveals that a
rate calculation in either of these limiting cases is not
sufficient. For typical experimental parameters sm �
2!0@� � 1, �EJ � 200, and sb � 0:75 one gains a maxi-
mal R� � 1:45 at Q � 2:5. Asymmetry ratios for various
sm, see Fig. 1, lie around this value in agreement with
recent experimental findings [11]. Note that for these pa-
rameters Teff=T � 1:5. Precise numerical simulations con-
firm the result (13) and will be discussed elsewhere [19].
The general results (11) and (12) determine the rate asym-
metry due to the third cumulant also for other mesoscopic
conductors such as diffusive wires or chaotic cavities.
Since they apply for fast fluctuations, they provide a tool
to analyze current noise measurements in the interesting
high frequency regime [20].

To summarize, we have developed a formalism to de-
scribe the switching process of a JJ in the presence of weak

and fast non-Gaussian fluctuations. From the correspond-
ing rate expression the rate asymmetry due to the third
moment of current noise has been obtained. Our results for
the generalized FPE (6) and the escape rate (12) are
applicable to other decay processes in physics and chem-
istry, where complex noise sources are present.
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FIG. 1. Rate asymmetry R� according to (13) for !0@� � 0:5,
�EJ � 200, Q � 2:5, and various sm vs the bias current sb:
sm � 3 (solid), sm � 2:3 (long-dashed), sm � 1:7 (short-
dashed), sm � 1:1 (dotted). The inset shows R� for the same
parameters and sb � 0:75, sm � 1:1 as a function of Q.
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