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We study the far-field characteristics of oval-resonator laser diodes made of an GaAs=AlxGa1�xAs
quantum well. The resonator shapes are various oval geometries, thereby probing chaotic and mixed
classical dynamics. The far-field pattern shows a pronounced fine structure that strongly depends on the
cavity shape. Comparing the experimental data with ray-model simulations for a Fresnel billiard yields
convincing agreement for all geometries and reveals the importance of the underlying classical phase
space for the lasing characteristics.
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Introduction.—In the past two decades, quantum chaos
has proven to be a successful concept in understanding,
characterizing, and predicting the behavior of mesoscopic
systems [1,2]. Originally used to study the quantum ana-
logue of classically chaotic hard-wall billiard model sys-
tems, it also explains the behavior of realistic systems of
various shapes and character: the statistics of Coulomb-
blockade peaks in quantum dots [2], the geometry depen-
dence of the weak localization peak [3], or the level
statistics of microwave billiards [4]. The studies on quan-
tum chaos have mainly focused on the quest for universal-
ity from the viewpoint of statistical physics. Therefore,
despite the evident importance of the system’s underlying
classical phase space for the behavior of the quantum or
wave mechanical analogue (based on the analogy between
Schrödinger and Helmholtz equation [1] ), its specific
structure cannot be reconstructed from the traces it leaves
in typical observables like energy level or wave function
statistics.

In this Letter we shall see that detailed information
about the classical phase space can, however, be extracted
from the far-field radiation characteristics of oval-
microcavity laser diodes. The observed far-field pattern
(FFP) depends very sensitively on the shape, that is, on
the system’s underlying classical phase space, and we
convincingly support this idea by numerical simulations.
It is interesting to note that information about the classical
phase space is revealed by the coherent light emanating
from the lasing microcavity.

The oval-billiard family is a well-known model system
with interesting properties [5–7] in which each oval shape
is characterized by a shape parameter � � 2�0=L; cf.
Fig. 1(b). The curvature is, by construction [see Fig. 1(b)
and, e.g., Ref. [7] for instructions], discontinuous. This was
found to be crucial for understanding the phase-space
evolution upon variation of � [6]. Increasing �, the phase
space changes from fully chaotic (� � 0, stadium shape),
via mixed (0< �< 1, various oval shapes) to integrable

(� � 1, disk). Figure 2 shows the phase space of the
chaotic and integrable limit and the mixed phase spaces
for � 2 �0:45; 0:85� that consist of chaotic regions as well
as regular islands [5–8]. The simultaneous experimental
and theoretical investigation of a �-dependent mixed phase
space has not, to the best of our knowledge, been done
before and is at the core of the present study.

To understand the dynamics of the system, let us con-
sider a light ray hitting the resonator boundary at polar
angle � under an angle of incidence �, cf. Fig. 1(c), such
that total internal reflection takes place (j sin�j � 1=n). In
the circular cavity (� � 1), the light ray will remain con-
fined inside the cavity forever by means of conservation of
angular momentum, and form whispering gallery mode
(WGM) tori. To a certain extent, this scenario will remain
valid even if � is slightly decreased. The invariant WGM
tori are then perturbed to Kolmogorov-Arnold-Moser tori,
and the phase space becomes mixed. Note that for � �
0:76 the chaotic regions are disconnected (the chaotic sea
is split into two disjoined regions) whereas for � < 0:76 a

 

FIG. 1 (color online). An oval microlaser with � � 2�0=L �
0:45. (a) Scanning electron micrograph, (b) geometry, and
(c) phase-space coordinates.
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singly connected chaotic layer penetrates the phase space,
bypassing the embedded regular islands [6,7]; cf. Fig. 2.
The smaller � the more chaotic the cavity becomes, reach-
ing ergodicity in the limit � � 0.

The above-mentioned properties of ray dynamics in oval
billiards imply, in particular, that when � exceeds values of
�0:76, light rays are trapped in the disjoined chaotic
regions that lie above the critical line j sin�j � 1=n, unable
to leave the cavity. Accordingly, the emitted light intensity
is expected to decrease around �� 0:76 because the lasing
modes will be strongly confined inside the cavity and
leakage will be evanescent.

In order to elucidate if this property of classical phase
space could be detected in the emitted light, we actually
fabricated these oval-shaped semiconductor laser diodes
for various values of �, one of which is shown in Fig. 1(a).

System.—The resonators were made of metal organic
vapor phase epitaxy grown graded index separate confine-

ment GaAs=AlxGa1�xAs (with 0:2< x< 0:5) single-
quantum well wafer with n � 3:3 the effective index of
refraction. The typical system length is L� 50 �m.
Applying the reactive-ion-beam etching technique allows
one to realize specific oval cavities characterized by a
shape parameter � with extremely smooth and vertical
boundaries, see Fig. 1(a); the surface roughness is less
than 1=10 of the lasing wavelength �� 850 nm. Lasing
operation of these devices was achieved at room tempera-
ture by pumping with a pulsed injection current of 500 ns
width at a 1 kHz repetition rate.

Experiments.—In Fig. 3 we plot the total (polar-angle
integrated) far-field output power, measured at an injection
current of 4 times the threshold current, as function of the
shape parameter �. The pronounced drop in the emitted
light intensity around � & 0:76 (marked by arrow) is a
direct consequence of the above-mentioned appearance of
a transversal barrier in classical phase space and the change
of the lasing modes from refractive modes into evanescent,
WGM-type modes. This dip is also a clear sign that not
individual modes, but the underlying classical phase space
as a whole (representing a wealth of modes [9] ) determines
the behavior of the system.

In the following, we will shift our focus from the total
output power to the angular distribution of the emitted
radiation in the far field, i.e., the FFPs. The experimental
FFPs of oval lasing diodes with various � are shown in
Fig. 4 (black curves). FFPs were measured in a distance of
d � 70 mm by scanning a photodetector with a window of
w � 11 mm width around the laser diode covering an
angular range of 200� in �ff with a resolution ��ff �
2 arctan	w=2d
 � 9�.

The red curves in Fig. 4 are the results of numerical, ray-
model based simulations (explained in more detail below)
that convincingly support the experimental results. A uni-
form background was substracted in all cases in order to
exclude effects of spontaneous emission that is assumed to
be isotropic; the (absolute) minimum of the experimental
curves is set to zero by definition.

Model.—The theoretical model used here is based on the
ray picture. This is motivated by the large size parameter
�2�nL=�� 1000 of the experimental system; the ray
model can be expected to yield reliable results in this
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FIG. 3 (color online). Total emitted intensity of lasing micro-
cavities vs shape parameter �. Note the intensity drop (marked
by arrow) around �� 0:76 caused by the appearance of a
transversal barrier in phase.
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FIG. 2 (color online). Poincaré SOS illustrating the classical
phase space of hard-wall oval billiards. The critical lines
j sin�j � 1=n are shown by light-blue lines. In the top raw, the
limiting cases of a chaotic (� � 0, stadium) and an integrable
(� � 1, disk) phase space are shown; for � � 0:45, 0.76, 0.8, and
0.85 the phase space is mixed. To further visualize the differ-
ences in the phase-space structure, the evolution of 50 rays with
random initial conditions in the interval 0 � � � 0:1 and
0:28 � sin� � 0:32 is followed for 25 reflections (superposed
lighter points).
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regime [8,10]. A large number (250 000) of rays is started
with unit amplitude and random initial conditions covering
the whole phase space. The dynamics of each ray is gov-
erned by Snell’s and Fresnel’s law [11] that complement
the condition of specular reflection. The far-field radiation
characteristics is reconstructed from rays in the steady
phase-space distribution [8,12], an invariant object
uniquely related to the underlying phase-space structure
and characterized by an exponential decay of the internal
light intensity versus trajectory length. The initial transient
regime where the internal intensity decays faster than
exponentially due to the presence of, e.g., bouncing ball
orbits, is discarded [8]. That the linear ray model works so
well for describing nonlinear lasing light is related to the
large size parameter and the fact that not a single, but a
multitude of modes is lasing [9].

Results.—The observed FFPs exhibit a clear and promi-
nent minimum-maximum structure that is remarkably well
reproduced by the ray-model simulations for all �; cf.
Fig. 4. Apart from the edges of the broad maxima where
side peaks are sometimes missing, the simulated FFPs
capture the decreasing width and the fine structure of the
central part, in particular, its extreme shape sensitivity, in a
semiquantitative manner.

For all � considered here, the preferred emission direc-
tion coincides with the shorter cavity axis (�ff � 90�).
Note that this direction is shifted by 90� in comparison

with the stadium shaped microcavity laser [8] due to
dynamical eclipsing [13]: for � > 0, regular (bouncing
ball) islands around the stable fixed points sin� � 0 and
� � 0�, 180� impose constraints on all other orbits. Light
rays will still emerge mainly from the regions of highest
curvature, but nearly tangentially, i.e., in direction of the
shorter cavity axis; cf. also Figs. 2 and 5.

In the remaining part of this Letter, we will focus on the
fine structure of the FFP maxima and show how the under-
lying classical phase space expresses itself in this signa-
ture; cf. Figs. 4 and 5. That the ray-model can effectively
reproduce the fine structure and width of the central part of
the FFP maxima becomes especially evident when looking
at � � 0:76 where the side peaks are clearly separated and
the plateaulike structure of the central part is well de-
scribed, similar arguments apply to the wide maximum
with the slight dip for � � 0:45. The power of our simple
model is also nicely illustrated when comparing the FFPs
for � � 0:8 and 0.85 which are strikingly different despite
the very similar cavity geometry: for � � 0:8, a distinct
minimum in the central plateau is evident in both experi-
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FIG. 5 (color online). From classical phase space to the FFPs
of microcavities (ray-model based simulation). The transmitted
Fresnel intensity (color scale) is shown in the near field (lower
panels, sine of angle of incidence � vs polar-angle angle � at
transmission) and far field (upper panels, resulting far-field angle
�ff vs polar angle � of ray origin). The region of violated total
internal reflection is enclosed by light lines in the lower panels.
The intensity distribution in the lower panels corresponds well to
the hard-wall results (cf. the lighter points in Fig. 2); their
translation into the FFP in the upper panels and in Fig. 4 is
evident. The inset for � � 0:45 illustrates how the details of the
observed FFP structure are related to shape-specific orbits as the
one shown (see text).
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FIG. 4 (color online). Experimentally observed FFPs (far-field
intensity Iff vs angle �ff , black curves; same injection currents as
in Fig. 3 were used) for various shape parameters � (see insets).
The ray-model simulations are superimposed (red curves); all
data were averaged over a 9� window. The simulation data are
offset by the average residual background of the experimental
data; normalization is with respect to the peak heights. Apart
from the side peaks, the agreement between experiment and
theory is convincing and the drastic changes in the FFP upon tiny
changes in the shapes are nicely reflected in the simulation.
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ment and theory which is missing for � � 0:85, again in
both data sets.

FFP and classical phase space.—We now provide nu-
merical evidence that these distinct differences in the fine
structure of the FFP maxima originate in the structure of
the underlying phase space. We already discussed the
Poincaré surface of section (SOS) of oval (hard-wall)
billiards in Fig. 2 and turn now to the properties of light
leaving the open system; cf. Fig. 5. The Fresnel intensity
transmitted into far-field direction �ff , originating from a
certain near-field angle� and an angle of incidence � prior
to transmission, is represented in color scale histograms for
the near- and far-field intensity (lower and upper panels,
respectively). To this end the respective spaces, ( sin�, �)
and (�ff , �), were divided into cells in which the Fresnel
intensity of transmitted light rays was collected using the
ray model described above.

Superimposing the classical phase space from Fig. 2 on
the light distribution in the near field (lower panels) reveals
that for all � light rays leave indeed exclusively from the
high curvature regions. Moreover, the larger �, the closer
to the critical lines j sin�j � 1=n are the angles of inci-
dence prior to transmission. That this is a characteristic
property of the underlying classical phase space becomes
even clearer when comparing the signatures in Fig. 5 with
the fingerprint of light rays started at the high curvature
region with near-critical incidence in the Poincaré SOS,
see the lighter points in Fig. 2.

For � � 0:45, the structure in the emitting regions is
richer than Fig. 2 would suggest. This is related to the
intricate interplay between geometry, trajectory, and
Fresnel’s law and illustrated in the inset of Fig. 5. To this
end 50 rays (marked by white circles and numbered 0)
leaving the cavity in the high intensity region close to the
critical line were followed for the next reflections (marked
by numbers—colors and the white trajectory are guides for
the eye); those rays emit only little intensity at the first
bounces. Intensity is again emitted refractively at the next
subcritical reflections occurring 6 and 7 bounces later
(arrows in inset). The Poincaré SOS signature of these
bounces is marked by green squares (the other numbers
complete the Poincaré SOS schematically): the emergence
of the linelike structure in the near-field Fresnel intensity
(originating at bounce 7) becomes evident (symmetry con-
siderations complete the line pattern). Note that trajectories
started in the intensity gaps couple out refractively after
few bounces but not once the steady phase-space distribu-
tion is reached.

The upper panels of Fig. 5 show how the near-field
patterns are translated into the far fields; the correspon-
dence is evident. Since the FFPs shown in Fig. 4 are
obtained by summing the Fresnel intensities in the upper
panels horizontally (over all �), we conclude that the
observed far-field characteristics of (even) the lasing
cavities are intimately connected with, and can nicely be
explained by, the classical phase-space structure. More-
over, origin and evolution of the fine structure of the FFP

maxima in Fig. 4 are easily understood in the representa-
tion of Fig. 5: each FFP maxima in Fig. 4 consists of two
contributions corresponding to light leaving from the two
regions of highest curvature. For 0:45 � � � 0:8, the two
contributions are separated in �ff causing a multipeak
structure of the FFPs, whereas for the only slightly larger
shape parameter � � 0:85 they (almost) merge, in excel-
lent agreement with experiment.

Conclusion.—We fabricated oval-shaped resonant mi-
crocavity lasers of various shapes, and lasing operation was
successfully established. We showed that the emitted co-
herent light uniquely reflects the characteristics of the
underlying classical phase space. We employed a ray-
based model that allows us to relate the observed peaks
in the FFPs convincingly and unambiguously to the phase-
space structure. In particular, we find that the formation of
a transversal barrier in the underlying classical phase space
around � & 0:76 can be detected by coherent light.
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