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The first excited 0� state in 12C (Hoyle state) has been predicted to be a dilute self-bound gas of bosonic
� particles, similar to a Bose-Einstein condensate. To clarify this conjecture, precise electron scattering
data on form factors of the ground state and the transition to the Hoyle state are compared with results of
the fermionic molecular dynamics model, a microscopic �-cluster model, and an �-cluster model with
reduced degrees of freedom (in the spirit of a Bose-Einstein condensed state). The data indicate clearly a
dilute density with a large spatial extension of the Hoyle state. A closer inspection of the model
calculations, which reproduce the experimental findings, reveals that the term Bose-Einstein condensation
of three � particles must not be taken too literally.
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The production of the element carbon is a key reaction
of stellar nucleosynthesis. Its most abundant isotope, 12C,
is created in the fusion of three � particles through the
formation of the short-lived 8Be ground state as an inter-
mediate state [1]. Early on, Hoyle recognized that the
observed abundance requires an accelerating mechanism
and he postulated [2] the existence of a J� � 0� excited
state in 12C close to the threshold for 8Be� 4He fusion.
Indeed, such a state at an excitation energy E� �
7:654 MeV in 12C was experimentally confirmed soon
afterwards [3]. Despite its astrophysical relevance, to
date the production rate through the above mechanism is
known with insufficient precision only [4,5].

In a nuclear structure this so-called ‘‘Hoyle state’’ is
playing a prominent role as a prototype of �-cluster
states in light nuclei. Unlike the ground state its descrip-
tion poses a continuing challenge to shell-model ap-
proaches. Even the most advanced no-core calculations
using very large model spaces fail [6]. In fact, this state
is not tangible in models using a harmonic oscillator basis.
On the other hand, cluster models have been popular for
describing the spectrum of 12C (for some recent work, see,
e.g., [7–11]). Recently it has been pointed out that the
Hoyle state can be viewed as a dilute gas of weakly
interacting � particles resembling the properties of a
BEC [12–17].

The purpose of this Letter is to investigate the structure
of the Hoyle state with experimental data on electron
scattering, which is the ideal method to map the charge
distribution of nuclei. Extensive data up to high momen-
tum transfers q � 3 fm�1 exist for elastic electron scatter-
ing on 12C (see [18] and references therein) as well as for
the transition to the Hoyle state [19] including some recent
measurements [20] at the superconducting Darmstadt elec-
tron linear accelerator S-DALINAC extending previous
data at low q [21]. The most appropriate experiment would
be a study of elastic electron scattering on the Hoyle state

itself, which, however, is impossible because of its short
lifetime. Instead one has to revert to the available data
summarized above.

These data are then compared with the predictions of
different theoretical models. The first model is the fermi-
onic molecular dynamics (FMD) approach [22] which
spans the many-body Hilbert space with Slater determi-
nants built on single-particle wave packets of Gaussian
shape. To recover the symmetries of the Hamiltonian the
intrinsic Slater determinants are projected on angular and
total linear momentum. The effective nucleon-nucleon
interaction VUCOM employed here is derived from the
realistic Argonne V18 potential by means of the unitary
correlation operator method (UCOM) [23] which explicitly
treats the effects of short-ranged repulsive and tensor cor-
relations. It is augmented with a phenomenological cor-
rection (total strength about 15% of VUCOM) adjusted to
reproduce the binding energies of 4He, 16O, 40Ca, 24O, 34Si,
and 48Ca as well as the charge radii of 4He, 16O, and 40Ca.
This model reproduces many features of nuclei up to mass
number A � 60.

The variational parameters of the FMD wave functions
are the parameters of the single-particle states. The FMD
states are very flexible and can describe cluster states as
well as shell-model–like configurations. In the present
calculation the many-body basis consists of 16 intrinsic
states obtained in a variation after angular momentum
projection procedure (projecting on 0� and 2� states)
with constraints on the radii and additional 57 states that
have been iteratively selected to minimize the energies of
the first three 0� states. These states are chosen out of a set
of 42 FMD states obtained in variation after parity projec-
tion with constraints on radii and quadrupole deformation
and 165 explicit �-cluster triangle configurations covering
a wide range of relative distances and angles. An � cluster
is defined here as a product of four Gaussian single-particle
states with total spin and isospin equal to zero. The anti-
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symmetrized molecular dynamics model (see [24] for a
recent discussion of 12C) uses similar wave functions but
imposes a fixed width parameter for the Gaussian wave
packets. As shell-model–like states have larger width pa-
rameters than the cluster states, where the width is that of a
4He nucleus, the restriction to a common fixed value is a
disadvantage compared to the FMD approach.

In a second model (labeled � cluster) we restrict
ourselves to the �-cluster triangle configurations.
Convergence for the first three 0� states is achieved with
a subset of 55 states. In this case we essentially imple-
ment a microscopic �-cluster model using Brink-type [25]
wave functions. However, with the �-cluster states
alone a significant underbinding is observed for the
FMD Hamiltonian. Therefore, we employ the modified
Volkov V2 interaction proposed in [26] which is fine-tuned
to reproduce the ground and Hoyle state energies in 12C
within an �-cluster model. One has to keep in mind that
this interaction is especially tailored and cannot be used in
other nuclei; e.g., for 16O it already leads to an overbinding
of about 25 MeV. The addition of a spin-orbit force would
destroy the reproduction of the 12C ground state properties.
Therefore the predictive power is limited.

The same interaction is used in the third model (labeled
‘‘BEC’’) by Funaki et al. [13]. Here the number of degrees
of freedom is reduced even further by using basis states
where the center-of-mass coordinates of all the � clusters
are given by the same (deformed) wave function as in a
Bose-Einstein condensate. Of course the state has to be
antisymmetrized finally. The bosonic nature of the wave
function therefore survives only when the density of the �
clusters is low enough such that antisymmetrization is not
important. This is certainly not the case for the ground state
and only to a certain extent for the Hoyle state. A detailed
analysis [16,27] within an �-cluster model, using a slightly
different interaction, shows that the probability to find all �
clusters in the same s-wave orbit is about 30% for the
ground state and about 70% for the Hoyle state. Thus the
attribute ‘‘Bose-Einstein condensate’’ should not be taken
too literally.

A comparison of the three models for energies, radii, and
transition strengths in 12C is shown in Table I. The
�-cluster results agree very well with the BEC approach
and also with resonating group method calculations [26].
All models give very large radii for the Hoyle state as well
as for the 0�3 and the 2�2 state. In the cluster models the
absence of spin-orbit forces leads to the well-known under-
estimation of the 2�1 energy indicating again their sche-
matic nature.

To quantify the degree of � clustering within the FMD
wave functions, which are obtained by a multiconfigu-
ration mixing calculation containing shell-model–like
and cluster states, we calculate the overlap of the eigen-
states with the �-cluster model space. For that we con-
struct a projection operator P� using the 165 �-cluster

triangle configurations. We obtain h0�1 jP�j0
�
1 i � 0:52,

h0�2 jP�j0
�
2 i � 0:85, h0�3 jP�j0

�
3 i � 0:92, h2�1 jP�j2

�
1 i �

0:67, and h2�2 jP�j2
�
2 i � 0:99. A restriction to �-cluster

configurations is obviously not sufficient for a description
of the ground state. The spin-orbit force breaks the �
clusters and a large shell-model component is found in
the FMD ground state. The Hoyle state, on the other hand,
is dominated by �-cluster contributions but still has a
sizable component of shell-model nature.

In Fig. 1, we compare calculated electron scattering
cross sections with measured data and show the corre-
sponding charge densities for the ground state, the Hoyle
state, and the transition between them. The data are given
as the ratio of the measured cross section to the Mott cross
section. The theoretical cross sections are performed in
distorted wave Born approximation (DWBA) [29] from the
theoretical charge densities. Although the transparent rela-
tion between cross sections and charge densities as Fourier
transforms of each other is lost to some extent, DWBA is
preferred because the differences to the plane wave Born
approximation are sizable, in particular, at higher momen-
tum transfers.

In the FMD and the �-cluster model, we calculate the
densities of pointlike protons and neutrons which are then
folded with proton and neutron charge densities [30] to
obtain the densities shown in Fig. 1. The same proton and
neutron charge densities are used to calculate the densities
from the matter densities obtained within the BEC model
[17].

TABLE I. Energies, radii, and transition strengths. Units of
energies are MeV, of radii fm, M�E0� e fm2, and B�E2� e2 fm4.
Data are from [28], BEC results from [13,15].

Experimental FMD � cluster BEC

E�0�1 � �92:16 �92:64 �89:56 �89:52

E��0�2 � 7.65 9.50 7.89 7.73

E�0�2 � � E�3�� 0.38 0.44 0.38 0.26

E��0�3 � (10.3) 11.90 10.33

E��2�1 � 4.44 5.31 2.56 2.81

E��2�2 � (11.16) 11.83 9.21 9.03
E�3�� �84:89 �83:59 �82:05 �82:05

rcharge�0
�
1 � 2.47(2) 2.53 2.54

r�0�1 � 2.39 2.40 2.40

r�0�2 � 3.38 3.71 3.83

r�0�3 � 4.62 4.75

r�2�1 � 2.50 2.37 2.38

r�2�2 � 4.43 4.02

M�E0; 0�1 ! 0�2 � 5.4(2) 6.53 6.52 6.45

B�E2; 2�1 ! 0�1 � 7.6(4) 8.69 9.16

B�E2; 2�1 ! 0�2 � 2.6(4) 3.83 0.84
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A good reproduction of the ground state form factor is a
precondition to draw sound conclusions on the charge
distribution of the Hoyle state from the transition form
factor because both states enter the transition matrix ele-
ment on equal footing. As seen in Fig. 1 the ground state
form factor is described well by the FMD model. The
results for the � cluster and BEC models are almost
identical and show a slightly worse agreement with the
data. Modifications by neglected contributions from meson
exchange currents are expected to be small [31,32].

The �-cluster model and the BEC reproduce the shape
of the transition form factor very well. The FMD model, on
the other hand, somewhat overestimates the data in the
region of the first maximum and has its node at q �
2:2 fm�1 while the experimental minimum is at q �
2:0 fm�1. The differences in the transition form factors
are mainly due to differences in the Hoyle state. Compared
to the �-cluster models the FMD charge density of the
Hoyle state has a smaller surface thickness and a lower
central density, leading to a stronger oscillation in the
transition density. These differences also show up in the
form factors of the Hoyle state where the models show
noticeable differences at medium and high momentum
transfers. We suspect that minor modifications of the
FMD interaction, taking �-� scattering data into account,
could result in an improved description—investigations
are under way.

Charge densities and form factors are essentially one-
body observables and do not reflect many-body correla-

tions existing in the many-body state. Therefore the form
factors provide no direct information on the �-cluster
structure, neither in the ground state nor in the Hoyle state.
However, as shown below a cluster nature of the Hoyle
state is also supported by the FMD calculations, where the
Hamiltonian can choose between shell-model–like and
cluster configurations. An analysis of the FMD Hoyle state
shows that its leading components displayed in Fig. 2 are
clusterlike and resemble 8Be� � configurations. Two of
the � particles are typically close to each other and the
third one is farther away. The same is true for the cluster
model, while in the BEC model the relative positions of the
� clusters are uncorrelated. The ground state is dominated
by more compact configurations which have a large over-
lap with shell-model states (see the right-hand side of
Fig. 2). In the 0�3 and 2�2 states we also find the leading
components to be of a 8Be� � nature but featuring more
prolate open triangle configurations. The 0�2 and 2�2 states
can therefore not be considered as members of a rotational
band. This is confirmed by the B�E2� values for the tran-
sition from the 2�2 state to the 0�2 and 0�3 states, which are
of similar magnitude.

To summarize, highly precise electron scattering data
for elastic scattering and the transition to the J� � 0� state
at E� � 7:654 MeV serve as an important test of the nature
of the 0� states in 12C. The data are in accord with the
Hoyle state having a low density, in the center about half of
that of the g.s., and a large spatial extension with a rms
radius that is about 1.5 times bigger than that of the ground
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FIG. 1. Left column: FMD (solid lines), � cluster (dashed lines), and BEC (from [17], dotted lines) predictions of the charge form
factors in 12C in comparison to experimental data (open squares). Elastic scattering on g.s. (top panel), transition to the Hoyle state
(middle panel), elastic scattering on the Hoyle state (bottom panel). Right column: Corresponding charge density distributions.
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state. These types of density profiles are predicted by
fermionic molecular dynamics and �-cluster models.
While the latter more schematic models presuppose the
� structure, FMD contains many other states of a different
structure, but still predicts the Hoyle state to be dominantly
composed of three weakly bound � particles. The FMD
calculations also show that the relative positions of the �
clusters are correlated mostly resembling 8Be plus � con-
figurations. This correlation and the fact that antisymmet-
rization is not negligible is in contradiction to a naive
interpretation of the BEC wave function as a true Bose-
Einstein condensate.

A final conclusion on the nature of the Hoyle state
certainly requires further experimental and theoretical ef-
forts. The model calculations should be extended to test
further observables like decay features or scattering with
hadronic probes. It might also be interesting to investigate
the problem in other ab initio approaches like the Green
function Monte Carlo method [33]. Finally, the Hoyle state
could be a prototype for a whole class of such states near
the �-particle thresholds in light self-conjugate 4n nuclei
as in 16O [12] or even more exotic states [34]. Electron
scattering will be an indispensable tool to resolve these
questions, and experimental studies of other candidate
states are underway.
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us with many unpublished �e; e0� data, to P. Schuck for
stimulating discussions, and to Y. Funaki for the �-cluster
condensate model results. This work has been supported by
the DFG under Contract No. SFB 634 and the NSF by
Grant No. PHY-0244453.
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FIG. 2 (color online). Intrinsic one-body densities of the four FMD states which contribute most to the Hoyle state and their
respective amplitudes for the ground state (0�1 ) and the Hoyle state (0�2 ). The fifth state, obtained by variation after projection on
angular momentum, is the leading component in the ground state. Note that the FMD states are not orthogonal.
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