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We show that in the microscopic domain of QCD (also known as the � domain) at nonzero chemical
potential the average phase factor of the fermion determinant is nonzero for �<m�=2 and is
exponentially suppressed for larger values of the chemical potential. This follows from the chiral
Lagrangian that describes the low-energy limit of the expectation value of the phase factor. Explicit
expressions for the average phase factor are derived using a random matrix formulation of the zero
momentum limit of this chiral Lagrangian.
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Introduction.—During the past decade, a great deal of
progress has been made in understanding the phase dia-
gram of the QCD partition function in the chemical-
potential–temperature plane. Although early analytical
arguments [1] clarified the nature of the chiral phase tran-
sition along the temperature axis, a detailed quantitative
understanding could only be achieved by means of lattice
QCD simulations (see [2] for a review). The situation at
nonzero chemical potential is much less clear. Although
perturbative arguments, model calculations, and phenome-
nological arguments seem to give a consistent picture [3],
first-principle quantitative information is lacking. The
main reason is that QCD at nonzero chemical potential
cannot be simulated reliably in much of the chemical-
potential–temperature plane because the fermion determi-
nant is complex (the sign problem). Progress has been made
around the critical temperature and small chemical po-
tentials, where different lattice QCD approaches seem to
converge [4–8]. Throughout this Letter, chemical poten-
tial is short for quark chemical potential and will be de-
noted by �.

The question we wish to address in this Letter is whether
there exists a parameter domain for which the phase of the
fermion determinant is manageable. Since there is no sign
problem for � � 0, we expect that for sufficiently small
nonzero chemical potential lattice QCD simulations are
possible. The standard argument is that the number of
gauge field configurations required for a converged cal-
culation diverges exponentially with the volume as
exp�2V�F�, where V�F is the difference of the free
energy of typical gauge field configurations generated by
the Monte Carlo algorithm and the converged free energy.
One limit in which the sign problem remains manageable is
when V�F remains finite in the thermodynamic limit. We
expect that for sufficiently small � the free energy differ-
ence behaves as �2V. For the sign problem to be manage-
able the chemical potential then has to scale as 1=

����
V
p

in the
thermodynamic limit. A limit of this type is well known—
it is the microscopic limit or the � limit of the QCD
partition function. In this limit the mass and chemical

potential dependence of the QCD partition function is
determined by the zero momentum modes of the
Goldstone bosons associated with the spontaneous break-
ing of chiral symmetry.

One observable that directly tests the severity of the sign
problem is the expectation value of the phase factor of the
fermion determinant. This phase factor can be expressed as
the ratio of the fermion determinant and its complex con-
jugate:

 e2i� �
det�D���0 �m�

det�Dy ���0 �m�
: (1)

Its expectation value is a QCD-like partition function with
a low-energy limit that is determined along well-
established rules by chiral symmetry and gauge invariance
[9,10]. In this Letter we analyze the average phase factor in
the microscopic domain of QCD [11–14]:

 m2
� �

1����
V
p ; �2 �

1����
V
p : (2)

In this domain the Compton wave length of the Goldstone
modes is much larger than the linear size of the box, so that
the chiral Lagrangian can be truncated to its zero momen-
tum sector. In the thermodynamic limit, simple expressions
can then be obtained using mean field arguments. At finite
volume, the calculations are much more complicated, but
we can exploit the equivalence with random matrix theory
[12,13], where recent progress [15–20] makes it possible
to derive exact results in the microscopic domain. Several
cases will be discussed: the quenched limit, the phase
quenched limit, and QCD with dynamical flavors. In all
cases we will find that the average phase factor is nonzero
even for large �2V provided that 2�<m�. For 2�>m�
the average phase is exponentially suppressed with �2V.

Although QCD at nonzero baryon chemical potential
has a sign problem, this is not the case for QCD with two
colors, QCD with gauge fields in the adjoint representation
and the phase quenched partition function. The chemical
potential and mass dependence of these partition functions
has been analyzed by means of chiral Lagrangians or
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random matrix theory [9,10,14,21–26] as well as on the
lattice [27–29]. The success of these calculations suggests
that equally impressive lattice QCD results can be obtained
for the average phase factor. We hope that the results
presented in this Letter will encourage such calculations.

The approach introduced in this Letter is directly appli-
cable to QCD at nonzero � angle. Fermion sign problems
also appear in other interesting physical systems [30]. It
would be worthwhile to analyze them along the lines
proposed in this Letter.

General arguments.—In this section we will evaluate the
� dependence of the average phase factor in the mean field
limit. Below we will confirm these results from the asymp-
totic limit of the exact expressions for the microscopic
domain. In this domain, it is natural to work at fixed
topology instead of fixed � angle. The results presented
in this section are for the thermodynamic limit and do not
depend on the topological charge.

The vacuum energy density does not depend on the
chemical potential in a phase that is not sensitive to the
boundaries. This is the case in the normal phase where the
chemical potential is below the mass of the lightest particle
with the corresponding charge. For larger � there is a net
particle flux in the time direction of the Euclidean torus and
the free energy depends on the chemical potential [31].
Although in the normal phase the free energy is � inde-
pendent, the excitations of the vacuum are not. For a chiral
Lagrangian the masses of the Goldstone modes for �<
m�=2 are given by [10]

 M��� � m� � b�; (3)

where b is the charge of the particles corresponding to �.
In the zero momentum sector, the thermodynamic limit of
the partition function is therefore given by

 Z � J
Y
k

1

m� ��bk
e�VF; (4)

where the Jacobian, J, is from the measure of the
Goldstone manifold and F is the vacuum energy density,
both evaluated at the saddle point. The prefactor gives a
1=V correction to the free energy density. The prefactor is
important if we consider the expectation value of the phase
factor of the quark determinant which is given by the ratio
of two partition functions:

 he2i�iNf �
ZNf�1j1�

ZNf
: (5)

They are defined by (h� � �i refers to quenched averaging)

 ZNf�1j1� �

�
det�D���0 �m�

det�Dy ���0 �m�
detNf �D���0 �m�

�

(6)

and

 ZNf � hdetNf �D���0 �m�i: (7)

The partition function (6) contains [32] Nf � 1 fermionic
quarks and one conjugate bosonic quark. Assuming maxi-
mum spontaneous breaking of the axial flavor symmetry,
this results in Nf � 1 charged fermionic Goldstone modes
composed of a fermionic quark and a conjugate bosonic
antiquark as well as an equal number of antiparticles with
the opposite charge. In addition, for topological charge
zero, we have the usual �Nf � 1�2 neutral Goldstone bo-
sons and one neutral Goldstone mode made out of two
bosonic quarks. The partition function in the denomi-
nator contains N2

f neutral Goldstone bosons. In the normal
phase, the saddle point of the static part of the effective
Lagrangian is � independent and neither the Jacobian nor
the free energy depend on �. Using (4), the average phase
factor for �<m�=2 is given by

 he2i�iNf �
�m2

� � 4�2�Nf�1

m
2Nf�2
�

�

�
1�

4�2

m2
�

�
Nf�1

: (8)

We emphasize that the free energies of ZNf�1j1� and ZNf
cancel. Hence for �<m�=2 the sign problem is not ex-
ponentially hard in the microscopic domain (2).

This is not the case for�>m�=2, where the free energy
of ZNf�1j1� is� dependent exactly as in other theories with
charged Goldstone particles [10]. This leads to an expo-
nential suppression of the average phase factor (F� is the
pion decay constant)

 he2i�iNf 	 e
�2VF2

��2�1�m2
�=4�2�2 (9)

for�>m�=2. In addition, the Goldstinos with massm� �
2� become exactly massless for�>m�=2 [10] so that the
leading contributions to the prefactor cancel. We conclude
that the sign problem is not tractable for large �2F2

�V and
�>m�=2.

Microscopic result.—As we have seen in Eq. (5), the
expectation value of the phase factor is given by the ratio of
two partition functions. We now calculate them in the
microscopic limit where the scaling variables

 m̂ � m�V and �̂ � �F�
����
V
p

(10)

are kept fixed for V ! 1. In this limit, the QCD partition
function is equivalent to the large N limit of a random
matrix theory of 2N 
 2N matrices with the same global
symmetries and transformation properties [12,13]. This
allows us to perform the calculations using recent develop-
ments in the method of orthogonal polynomials [17–20].
Starting from a general expression in [19], it can be shown
that the microscopic limit of the partition functions in (5)
can be expressed in terms of modified Bessel functions and
their Cauchy transforms. For zero topological charge, we
obtain (with �m̂ � m̂d=dm̂)
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he2i�iNf 	
1

ZNf

1

m̂Nf�Nf�1�




������������������������

X�0��m̂; �̂� � � � X�Nf�1��m̂; �̂�

I0�m̂� � � � �
Nf�1
m̂ I0�m̂�

..

. ..
.

�
Nf
m̂ I0�m̂� � � � �

2Nf�1
m̂ I0�m̂�

������������������������
; (11)

where [11]

 ZNf 	 m̂
�Nf�Nf�1� det��k�lm̂ I0�m̂��k;l�0;...;Nf�1: (12)

The Cauchy transforms X�k��m̂; �̂� are defined by

 X�k��m̂; �̂� 
 �
e�2�̂2

4��̂2

Z
d2z

w�z; z�; �̂��kz�I0�z��

z2 � m̂2 ; (13)

where w�z; z�;�� is the weight function of the random
matrix model in [17]. The expressions for the Cauchy
transform (13) can be rewritten as a one-dimensional in-
tegral following the approach of [21]. Next we give ex-
plicit results for the thermodynamic limit of (11), which is
obtained from the saddle-point approximation for �̂! 1
and m̂! 1 at fixed �2=m [33].

In the quenched case (Nf � 0) a saddle-point approxi-
mation of (11) gives

 lim
m̂;�̂2!1

he2i�iNf�0 �

�
1�

4�2

m2
�

�
e0; 2�<m�: (14)

This result agrees with the mean field arguments given
above. For �>m�=2 the result is exponentially sup-
pressed exactly as in (9) and with a prefactor that cancels
to leading order in 1=V. Notice that the phase factor is only
exponentially suppressed for �>m�=2.

For Nf � 1 the thermodynamic limit of the exact micro-
scopic result (11) is given by

 lim
m̂;�̂2!1

he2i�iNf�1�

�
1�

4�2

m2
�

�
2
e0; 2�<m�; (15)

in agreement with the mean field arguments given above.
For �>m�=2, at finite volume the result is given by (9)
with a prefactor that cancels to leading order in 1=V.

By now it should be clear that the thermodynamic limit
of the microscopic result (11) reproduces the general for-
mula (8) for all values of Nf. As further illustration we plot
in Fig. 1 the average phase factor for Nf � 2. The dashed
curve represents the result of Eq. (11) for mV� � 4 and
the solid curve is its limit for mV�! 1 at fixed �=m�.
We observe a rapid convergence to the thermodynamic
limit especially at small �.

Finally, we calculate the average phase factor for the
phase quenched theory where the phase factor of the quark
determinant is ignored. For two flavors we find

 he2i�i1�1� �
hdet2�D���0 �m�i

hj det�D���0 �m�j
2i
: (16)

The microscopic limit of both partition functions is well
known [11,23], resulting in the average phase factor

 he2i�i1�1� �
I2

0�m̂� � I
2
1�m̂�

2e2�̂2 R1
0 dtte

�2�̂2t2I0�m̂t�2
: (17)

In the thermodynamic limit obtained by making a saddle-
point approximation of the integrals in (17) we find the
same result as in the quenched case (14). For 2�>m� the
result is once more given by (9) but with a different
prefactor than in the previous two cases.

Lattice simulations.—Several lattice simulations have
studied the fluctuations of the phase of the fermion deter-
minant. Both hcos�i [34] and h�2i [5,35] were considered.
In [5,35] the variance of the phase of the fermion determi-
nant was calculated using the Taylor expansion technique.
To lowest order in an expansion in � the average squared
phase is given by

 h�2i � h�i2 � �2@�1
@�2

logZ1�1� j�1��2�0; (18)

where

 Z1�1� � hdet�D��1�0�m�det�Dy��2�0�m�i: (19)

In the microscopic limit, this partition function is given by
the denominator of Eq. (17) with�! ��1 ��2�=2. In the
thermodynamic limit we obtain (�<m�=2)

 h�2i � h�i2 � 2
�2

m2
�
� � � � : (20)

The work of Allton et al. [5,35] indeed suggests that h�2i 	
�2=m2

�, but the prefactor appears to be several times larger
than given by (20). There can be several reason for this dis-
crepancy. First, the calculations of Allton et al. [5] were
performed close to the critical temperature whereas our
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FIG. 1 (color online). The average phase factor for two flavor
QCD in the � regime as a function of the chemical potential for
m�V � 4 (dashed curve) and m�V ! 1 (solid curve).
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results are for zero temperature. In particular, susceptibili-
ties are sensitive to the temperature. Second, our results
have been derived for the � domain of QCD whereas the
pion mass in [5] does not satisfy the condition (2). Third,
there could be significant ultraviolet contributions to the
average squared phase. Although, it can be shown along
the lines of [26] that the �-dependent terms do not intro-
duce additional ultraviolet divergences, for a lattice regu-
larization this is only the case after the necessary
subtractions have been made. Ultraviolet contributions to
the average phase factor are expected to behave as
exp��Vw2�2�, with w the width of the strip of eigenvalues
and � an ultraviolet cutoff. Since w	�2 (see [14]) ultra-
violet contributions are suppressed in the microscopic
limit.

Conclusions.—We have shown that for sufficiently
small � the average phase factor of the quark determinant
can be obtained from chiral perturbation theory. Explicit
expressions have been obtained in the microscopic domain
where �	 1=

����
V
p

and m	 1=V. Our results show a phase
transition of hexp�2i��i at � � m�=2 with hexp�2i��i � 0
beyond this point. In particular, this implies that there is no
serious sign problem for �	 1=

����
V
p

and a physical quark
mass. However, the sign problem is severe in the chiral
limit for any nonzero � where it is essential for the dis-
continuity of the chiral condensate [36].

Our results have been derived for zero temperature.
From the temperature dependence of the grand potential
we expect that phase fluctuations initially increase with
temperature. A deeper understanding of the sign problem
could be obtained by extending current lattice simulations
to lower temperatures and quark masses. We believe that
the confirmation of the analytical results for the phase
fluctuations predicted in this Letter will contribute signifi-
cantly to a first-principle understanding of the QCD phase
diagram at nonzero chemical potential.
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