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Shot noise in a voltage source changes the character of the quantum (dissipative) phase transition in an
ultrasmall Josephson junction: The superconductor-insulator transition transforms into the
superconductor-metal transition. In the metallic phase, the IV curve probes the voltage distribution
generated by shot noise, whereas in the superconducting phase, it probes the counting statistics of
electrons traversing the noise junction.
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The phenomenon of noise is continuing to be in the
focus of modern mesoscopic physics. A lot of attention is
devoted to shot noise [1], in particular, its full counting
statistics, non-Gaussian character, and asymmetry (odd
moments) [2–4]. They are also objects of intensive experi-
mental investigations [5,6]. This stimulated development
of effective methods of noise detection [7–16]. It has been
shown theoretically and experimentally that Coulomb
blockade of a Josephson junction is very sensitive to noise
from an independent source [8,10,11,15]. This can be used
for noise spectroscopy. The source of shot noise was a
current through an additional (noise) junction. It generated
the voltage drop on the shunt, which was added to the
voltage bias on the Josephson junction. Experimentally,
this phenomenon was investigated at low noise currents,
when electron tunneling events produced a sequence of
voltage pulses on the shunt resistance well separated in
time [8,10], whereas in the theory, only the case of low
voltage bias was solved analytically [11]. The preliminary
analysis of the case of high currents through the noise
junction [15] has pointed out that the response of the
Josephson junction to the voltage bias generated by this
current must be essentially different from that to the ideal
voltage bias. But quantitatively, the full response (the IV
curve) was not analyzed, and the absence of the analysis of
the noise effect on the Josephson junction in the low-
impedance environment did not allow to derive conclu-
sions about how noise can modify the quantum phase
transition.

This Letter investigates IV curves of an ultrasmall
Josephson junction biased both with the ideal and the noisy
voltage source. The analysis has been done for the high-
and low-impedance environment, characterized by the ra-
tio � � R=RQ. Here R is the shunt resistance and RQ �
h=4e2 � �@=2e2 is the quantum resistance for Cooper
pairs. The most important outcome of the analysis is that
noise modifies the character of the quantum (dissipative)
phase transition: The well known ‘‘superconductor-
insulator’’ transition [17–19] at � � 1 transforms to the
‘‘superconductor-metal’’ transition. This means that in the

high-impedance phase � > 1, the zero-bias conductance
does not vanish, but remains finite as in a junction between
two normal metals.

Figure 1 shows the electric circuit discussed in the paper.
Two voltages can bias the Josephson junction of capaci-
tance CJ: (i) the constant voltage V (ideal voltage bias),
and (ii) the fluctuating voltage drop Vs at the shunt resist-
ance R. The average voltage �Vs � IsR is determined by the
average current Is through the additional noise normal
junction of capacitance Cs and resistance RT . It is assumed
that RT � R. Then Is � ~V=RT , the noise junction is volt-
age biased and tunneling events at the junction are gov-
erned by the Poissonian statistics.

If only the ideal voltage bias is used (Is � 0), the P�E�
theory of incoherent tunneling of Cooper pairs yields the
following current through the Josephson junction [17–19]:
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�eE2
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FIG. 1. Electric circuit with two sources of constant voltages V
and ~V. The Josephson junction with the capacitance CJ is biased
with the voltage V and the fluctuating voltage drop Vs at the
shunt. The latter originates from the average current Is � ~V=RT
through the noise junction of capacitance Cs.
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characterizes the probability to transfer the energy E> 0
to environment (or to absorb the energy jEj from environ-
ment if E< 0). We restrict ourselves with the zero-
temperature limit when the phase-phase correlator, which
determines the P�E� function, is given by [11,15]
 

J0�t� � h�’0�t� � ’0�0��’0�0�i

� �
�
�et=�E1

�
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�

�
� e�t=�E1
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�
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t
�
� 2�� i�

�
; (3)

where � � RC is the relaxation time in the electric circuit,
C � CJ � Cs, � � 0:577 is the Euler constant, and
E1�z� �

R
1
1 e
�ztdt=t is the exponential integral. The

P�E� theory is based on the time-dependent perturbation
theory with respect to the small Josephson coupling energy
EJ. Therefore, the current I is small, and any feedback of
the Josephson junction on the circuit and the noise is
ignored. In addition, it is assumed that phase fluctuations
are Gaussian. At T � 0, P�E� vanishes for E< 0 since it is
the probability of the transfer of the energy jEj from the
environment to the junction, which is impossible if T � 0.
The subscript 0 points out that the phase fluctuations ’0

and the P0�E� function are determined by the equilibrium
Johnson-Nyquist noise.

If the ideal voltage bias V is supplemented with the
fluctuating voltage drop Vs at the shunt resistance R, the
P0�E� function in the expression for the current, Eq. (1),
should be replaced by a more general function [11,15],
which depends on the ideal bias V and the averaged
fluctuating bias �Vs:

 P�2eV; 2e �Vs� �
1

2�@

Z 1
�1

dteJ0�t�ei2eVt=@hexp�i�’s�t��i:

(4)

The phase difference �’s�t� � ’s�t� � ’s�0� � �2e=@�	R
t
0 Vs�t� is determined by the fluctuating voltage Vs�t�. The

P�E� function can be presented as a convolution of the two
P�E� functions [20]:

 P�2eV; 2e �Vs� � 2e
Z 1
�1

dVsP0�2e�V � Vs��Ps�2eVs�;

(5)

where P0�E� is related to equilibrium noise [Eq. (2)], and

 Ps�E� �
1

2�@

Z 1
�1

dteiEt=@hexp�i�’s�t��i; (6)

is the P�E� function for shot noise.
The averaged phase correlator in the expression for the

shot-noise Ps�E� function, Eq. (6), is a value of the gen-
erating function hexp���’s�t��i at � � i. The generating
function determines all moments and cumulants of the
random phase difference �’s�t�. For an ideal voltage
bias of the noise junction, the generating function can be
determined exactly [15,21] keeping in mind that the elec-

trons traversing the noise junction produce a sequence of
random voltage pulses at the shunt resistance R:

 Vs�t� � sgn�Is��e=C�
X
i

��t� ti�e
��t�ti�=�; (7)

where ti are random moments of time when an electron
crosses the junction. The average time interval between
tunneling events is e=Is, and the number of the events in a
fixed time interval is governed by Poissonian statistics. The
voltage pulses generate the sequence of phase jumps:

 ’s�t� � sgn�Is���
X
i

��t� ti��1� e��t�ti�=��: (8)

The generating function for the random phase difference
�’s�t� is given by

 hexp���’s�t��i � exp
�
Is�
e

���; t�
�
; (9)

where
 

���; t� � e����E1����e�t=�� � E1������ �
t
�
� �

� ln������1� e�t=���

� E1������1� e
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In the high-impedance case �� 1, the main contribu-
tion to the time integral in Eq. (4) comes from times t

RC=� � RQC much shorter than � � RC (see discussion
in Ref. [15]). Then the voltage does not vary essentially
during the time interval t, i.e., �’s�t� � 2eVst=@, and the
expression for ���; t� can be simplified:

 ���; t� � �E1�����t=�� � �� ln�����t=��: (11)

This means that the full statistics of the phase difference is
identical to the full statistics of voltage fluctuations as
found in Ref. [21]. Indeed, for the sequence of random
voltage pulses giving by Eq. (7), the generating function
for probability of voltage drop at the shunt is

 F��� � hexp��VsC=e�i � exp
�
Is�
e

�v���
�
; (12)

where

 �v��� � �E1���� � �� ln����: (13)

One can see that ���; t� given by Eq. (11) is identical to
�v��� in Eq. (13) with � � ���t=�. Altogether, this
means that the voltage distribution generated by shot noise
and parameterized by the averaged bias �Vs,

 p�Vs; �Vs� �
C

2�e

Z 1
�1

dxe�ixVsC=eF�ix�; (14)

directly determines the shot-noise P�E� function:

 Ps�E� �
1

2e
p��E=2e; �Vs�: (15)

Thus, the total P�E� function is the P�E� function for the
equilibrium noise averaged over the voltage distribution
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generated by the noise current:

 P�2eV; 2e �Vs� �
Z 1
�1

dVsP0�2e�V � Vs��p�Vs; �Vs�:

(16)

This approach called ‘‘the time-dependent P�E� theory’’
has already been used in previous numerical simulations
[22]. The approach is justified for the high-impedance
environment �� 1, but is not valid in the opposite case
of the low-impedance environment � < 1 (see below).

The high-impedance limit � � R=RQ !1 of the equi-
librium P�E� function is the �-function: P0�2eV� �
��2eV � 2e2=C� [23]. Then Eq. (16) yields

 P�2eV; 2e �Vs� �
1

2e
p
�
e
C
� V; �Vs

�
: (17)

and the P�E� function (current) directly scans the voltage
probability distribution generated by shot noise and given
by Eq. (14). The dependence of this function on �Vs at V �
0 is plotted in Fig. 2. In contrast to the ideal voltage bias,
which in the limit �! 1 yields the sharp peak P�2eV� �
�1=2e���V � e=C�, the noisy voltage bias yields the non-
Gaussian broad maximum. At V � 0, the P�E�-plot scans
dependence of the voltage distribution p�Vs; �Vs� on �Vs at
fixed Vs � e=C. In order to scan dependence on Vs, one
should tune the ideal bias V.

Let us consider now the P�E�-dependence on V at weak
noisy bias �Vs � e=C. Linearizing Eq. (14) with respect to
�Vs and taking the integral by parts one obtains

 p�Vs; �Vs� �
�VsC2

2�e2

Z i1

�i1
d�e��VsC=e�v���

�
�VsC

2�eVs

Z 1
�1

e�ixVsC=e
eix � 1

ix
dx

�
�VsC

2�eVs

	
Z 1
�1

sin�x�1� VsC=e�� � sin�xVsC=e�
x

dx:

(18)

This yields p�Vs; �Vs� � �VsC=eVs at 0<Vs < e=C and
p�Vs; �Vs� � �VsC=2eVs if Vs � e=C exactly. At Vs >
e=C, p�Vs; �Vs� vanishes. This is the voltage distribution
p�Vs� / dt=dVs inside a single voltage pulse Vs�t� �
�e=C� exp��t=��. Inserting this voltage distribution into
Eq. (17) yields the P�E� function �� P�2eV; 2e �Vs� plotted
as a function of V in Fig. 3. The singularity 1=Vs in
p�Vs; �Vs� leads to the singularity 1=�V � e=C� in P�E�.
The initial value of P�E� at V � 0 (due to finite bias �Vs) is
proportional to the ratchet current I0 found analytically in
Ref. [11] [see Eq. (21) there]. As for the vertical jump of
P�E�, it is a consequence of the approximation of P0�E� by
the delta-function leading from Eq. (16) and (17).
However, even for large �, the peak of P0�E� has a finite
width of the order of e=C

����
�
p

(ignoring a logarithm factor)

[19]. This smears the jump and leads to a finite linear slope
at V � 0 (the dashed line in Fig. 3) at V � 0, as evident
from Eq. (16). This slope corresponds to metallic conduc-
tance dI=dV analytically calculated in Ref. [11] for �� 1
[see Eq. (20) there]. Note that this conductance differs
from the conductance dI=d �Vs � I0= �Vs proportional to
the linear slope at �Vs � 0 in Fig. 2, but both are signatures
of the metallic behavior.

In the opposite limit of low-impedance environment
�� 1, the most important contribution to the P�E� func-
tion comes from long times t� �, and the P�E� function
does not scan the voltage distribution anymore. In this
limit, the Johnson-Nyquist correlator, Eq. (3), becomes

 J0�t� � �2�
�
ln
t
�
�
i�
2

�
; (19)

and the logarithm of the generating function, Eq. (10), is
approximately given by
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FIG. 2. P�E� function in the high-impedance limit R� RQ as
a function of the noisy bias �Vs [P�0; 2eVs�], or of the ideal bias V
[P�2eV; 0� � �1=2e���V � e=C�].
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FIG. 3. P�E� function at weak noise current ( �VsC=e � 0:15).
The dashed line shows smearing of the zero-bias jump with finite
width of the peak in the equilibrium P0�E� function.
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 ���; t� �
t
�
�e��� � 1�: (20)

This expression corresponds to the Poissonian statistics of
phase jumps, identical to the Poissonian full counting
statistics [15,21]. Since �� 1, we can expand in �. At
the same time, we can generalize this expansion on other
possible types of statistics. Then the phase correlator (the
generating function at � � i) can be written as

 hexp�i�’s�t��i � exp
�
i2e �Vst

@
�
�
; (21)

where

 � � �R � i�I � 1�
i���

2

hhn2ii

hhnii
�
�2�2�2

6

hhn3ii

hhnii
:

(22)

Here hhnkii are cumulants of the full counting statistics, n
being a number of electrons traversing the noise junction
during the time t. For the Poissonian statistics, all cumu-
lants are equal to the first cumulant hhnii, which is the
average number of electrons traversing the junction.
Inserting the expression (21) into Eq. (4), one obtains the
P�E� function in the low-impedance limit:
 

P�2eV; 2e �Vs� �
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Z 1
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dt
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	 Im
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���
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�
@

2e��V � �Vsj�j�

�
1�2�

: (23)

Though one cannot use this expression at very low voltages
where the perturbation theory in EJ becomes invalid [24],
the ‘‘superconductivity’’ current peak is present anyway,
both for ideal and noisy voltage bias. Equation (23) dem-
onstrates that in low-impedance environment, the IV curve
probes the counting statistics even though the dependence
on high cumulants k > 2 is not so pronounced.

Though the present Letter is restricted with T � 0, on
the basis of it, one may suggest that the metallic state
would be less sensitive to the temperature than the insula-
tor state. Indeed, one can probe the insulator behavior in
the limit V ! 0 only under conditions T � V � e=C.
Meanwhile, for detection of metallic conductance, a
weaker restriction T � e=C on the temperature is
sufficient.

In summary, shot noise in the voltage source dramati-
cally changes the character of the quantum (dissipative)
phase transition in the ultrasmall Josephson junction tuned
by the environment impedance. For the ideal voltage bias,
this is a transition from the superconducting state (� �
R=RQ < 1) to the insulator (Coulomb blockade, � �
R=RQ > 1). In contrast, in the case of the noisy voltage

source, the transition takes place between the supercon-
ducting phase and the metallic phase with finite zero-bias
conductance. This transition can be called superconductor-
metal transition. In the metallic phase, the IV curve is a
probe of the voltage distribution generated by shot noise,
whereas in the superconducting phase, the IV curve is
probing the counting statistics for electrons traversing the
noise junction.
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