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We show how stationary entanglement between an optical cavity field mode and a macroscopic
vibrating mirror can be generated by means of radiation pressure. We also show how the generated
optomechanical entanglement can be quantified, and we suggest an experimental readout scheme to fully
characterize the entangled state. Surprisingly, such optomechanical entanglement is shown to persist for
environment temperatures above 20 K using state-of-the-art experimental parameters.
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Entanglement, ‘‘the characteristic trait of quantum me-
chanics’’ [1], has raised widespread interest in different
branches of physics. It provides insight into the fundamen-
tal structure of physical reality [2], and it has become a
basic resource for many quantum information processing
schemes [3]. So far, entanglement has been experimentally
prepared and manipulated using microscopic quantum sys-
tems such as photons, atoms, and ions [3,4]. Nothing in the
principles of quantum mechanics prevents macroscopic
systems from attaining entanglement. However, the answer
to the question as to what extent entanglement should hold
when going towards ‘‘classical’’ systems is yet unknown
[5]. Therefore, it is of crucial importance to investigate the
possibilities to obtain entangled states of macroscopic
systems [6] and to study the robustness of entanglement
against temperature [7]. Experiments in this direction in-
clude single-particle interference of macromolecules [8]
and the demonstration of entanglement between collective
spins of atomic ensembles [9] and of entanglement in
Josephson-junction qubits [10]. Mechanical oscillators
are of particular interest, since they resemble a prototype
of classical systems. Thanks to the fast-developing field of
microfabrication, micro- or nanomechanical oscillators
can now be prepared and controlled to a very high preci-
sion [11]. In addition, several theoretical proposals exist
that suggest how to reach the quantum regime for such
systems [12]. Experimentally, quantum limited measure-
ments have been developed that could allow ground state
detection [13]. However, quantum effects in mechanical
oscillators have not been demonstrated to date.

Optomechanical coupling via radiation pressure [14] is a
promising approach to prepare and manipulate quantum
states of mechanical oscillators. Proposals range from the
quantum state transfer from light to a mechanical oscillator
to entangling two such oscillators [15–18]. In this Letter,
we propose an experimental scheme to create and probe

optomechanical entanglement between a light field and a
mechanical oscillator. This is achieved using a bright laser
field that resonates inside a cavity and couples to the
position and momentum of a moving (micro)mirror. The
proposal is based on feasible experimental parameters in
accordance with current state-of-the-art optics and micro-
fabrication. In contrast to other proposals [15,18], it re-
quires neither nonclassical states of light nor temperatures
close to the oscillator’s ground state. Entanglement is
shown to persist above a temperature of 20 K. We begin
by modeling the system and its coupling to the environ-
ment by using the standard Langevin formalism. Then we
solve the dynamics and quantify the entanglement gen-
erated in the stationary state. Finally, we discuss a suit-
able experimental apparatus capable of measuring the
entanglement.

We consider an optical Fabry-Perot cavity in which one
of the mirrors is much lighter than the other, so that it can
move under the effect of the radiation pressure force. The
motion of the mirror is described by the excitation of
several degrees of freedom which have different resonant
frequencies. However, a single frequency mode can be
considered when a bandpass filter in the detection scheme
is used [19] and mode-mode coupling is negligible.
Therefore, we will consider a single mechanical mode of
the mirror only, which can be modeled as an harmonic
oscillator with frequency wm. The Hamiltonian of the
system reads [20]

 H � @wcaya�
@wm

2
�p2 � q2� � @G0ayaq

� i@E�e�iw0tay � eiw0ta�; (1)

where q and p (�q; p� � i) are the dimensionless position
and momentum operators of the mirror, respectively, a and
ay (�a; ay� � 1) are the annihilation and creation operators
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of the cavity mode, respectively, with frequency wc and
decay rate �, and G0 � �wc=L�

����������������
@=mwm

p
is the coupling

coefficient, with L the cavity length in the absence of the
intracavity field andm the effective mass of the mechanical
mode [19]. The last two terms in Eq. (1) describe the
driving laser with frequency w0, and E is related to the
input laser power P by jEj �

��������������������
2P�=@w0

p
.

A proper analysis of the system must include photon
losses in the cavity and the Brownian noise acting on the
mirror. This can be accomplished by considering the fol-
lowing set of nonlinear Langevin equations, written in the
interaction picture with respect to @w0a

ya:
 

_q � wmp; (2a)

_p � �wmq� �mp�G0aya� �; (2b)

_a � ���� i�0�a� iG0aq� E�
������
2�
p

ain; (2c)

where �0 � wc � w0 and �m is the mechanical damping
rate. We have introduced the vacuum radiation input noise
ain, whose only nonzero correlation function is [21]

 hain�t�ain;y�t0�i � ��t� t0�; (3)

and the Hermitian Brownian noise operator �, with corre-
lation function [22]

 h��t���t0�i �
�m
wm

Z d!
2�

e�i!�t�t
0�!

�
coth

�
@!

2kBT

�
� 1

�

(4)

(kB is the Boltzmann constant and T is the mirror tempera-
ture). We can always rewrite each Heisenberg operator as a
c-number steady-state value plus an additional fluctuation
operator with zero-mean value, a � �s � �a, q � qs �
�q, p � ps � �p. Inserting these expressions into the
Langevin equations of Eqs. (2), these latter decouple into
a set of nonlinear algebraic equations for the steady-state
values and a set of quantum Langevin equations for the
fluctuation operators [23]. The steady-state values are
given by ps � 0, qs � G0j�sj

2=wm, �s � E=��� i��,
where the latter equation is, in fact, a nonlinear equation
determining the stationary intracavity field amplitude �s,
since the effective cavity detuning �, including radiation
pressure effects, is given by � � �0 �G2

0j�sj
2=wm. The

parameter regime relevant for generating optomechanical
entanglement is that with a very large input power P, i.e.,
when j�sj � 1. In this case, one can safely neglect the
nonlinear terms �ay�a and �a�q and gets the linearized
Langevin equations
 

� _q � wm�p; (5a)

� _p � �wm�q� �m�p�G�X � �; (5b)

� _X � ���X ���Y �
������
2�
p

Xin; (5c)

� _Y � ���Y � ��X �G�q�
������
2�
p

Yin; (5d)

where we have chosen the phase reference of the cavity
field so that �s is real, and we have defined the cavity field

quadratures �X 	 ��a� �ay�=
���
2
p

and �Y 	 ��a�
�ay�=i

���
2
p

and the corresponding Hermitian input noise
operators Xin 	 �ain � ain;y�=

���
2
p

and Yin 	 �ain �

ain;y�=i
���
2
p

. What is relevant is that the quantum fluctua-
tions of the field and the oscillator are now coupled by the
much larger effective optomechanical coupling G 	
G0�s

���
2
p

, so that the generation of significant optomechan-
ical entanglement becomes possible.

When the system is stable, it reaches a unique steady
state, independently of the initial condition. Since the quan-
tum noises � and ain are zero-mean quantum Gaussian
noises and the dynamics is linearized, the quantum steady
state for the fluctuations is a zero-mean bipartite Gaussian
state, fully characterized by its 4
 4 correlation matrix
Vij � �hui�1�uj�1� � uj�1�ui�1�i�=2, where uT�1� �
��q�1�; �p�1�; �X�1�; �Y�1�� is the vector of continu-
ous variables (CV) fluctuation operators at the steady state
(t! 1). Defining the vector of noises nT�t� �
�0; ��t�;

������
2�
p

Xin�t�;
������
2�
p

Yin�t�� and the matrix

 A �

0 wm 0 0
�wm ��m G 0

0 0 �� �
G 0 �� ��

0
BBB@

1
CCCA; (6)

Eqs. (5) can be written in compact form as _u�t� � Au�t� �
n�t�, whose solution is u�t� � M�t�u�0� �

R
t
0 dsM�s�n�t�

s�, whereM�t� � expfAtg. The system is stable and reaches
its steady state when all of the eigenvalues of A have
negative real parts so that M�1� � 0. The stability con-
ditions can be derived by applying the Routh-Hurwitz
criterion [24], yielding the following two nontrivial con-
ditions on the system parameters:
 

2�m���
4 � �2��2

m � 2�m�� 2�2 � 2w2
m�

���m�� �2 � w2
m�

2� � wmG2���m � 2��2 > 0; (7a)

w2
m��

2 � �2� � wmG2�> 0; (7b)

which will be considered to be satisfied from now on.
When the system is stable, one gets

 Vij �
X
k;l

Z 1
0
ds
Z 1

0
ds0Mik�s�Mjl�s

0��kl�s� s
0�; (8)

where �kl�s� s0� � �hnk�s�nl�s0� � nl�s0�nk�s�i�=2 is the
matrix of the stationary noise correlation functions. Due to
Eq. (4), the mirror Brownian noise ��t� is not delta-
correlated and therefore does not describe a Markovian
process [22]. However, quantum effects are achievable
only using oscillators with a large mechanical quality
factor Q � wm=�m � 1. In this limit, ��t� becomes
delta-correlated [25]:

 h��t���t0� � ��t0���t�i=2 ’ �m�2 �n� 1���t� t0�; (9)

where �n � �expf@wm=kBTg � 1��1 is the mean thermal
excitation number, and one recovers a Markovian process.
As a consequence, and using the fact that the three com-
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ponents of n�t� are uncorrelated, we get �kl�s� s
0� �

Dkl��s� s
0�, where D � Diag�0; �m�2 �n� 1�; �; �� is a

diagonal matrix, and Eq. (8) becomes V �R
1
0 dsM�s�DM�s�

T . When the stability conditions are sat-
isfied, M�1� � 0 and one gets the following equation for
the steady-state correlation matrix (CM):

 AV � VAT � �D: (10)

Equation (10) is a linear equation for V and can be straight-
forwardly solved, but the general exact expression is too
cumbersome and will not be reported here. In order to
establish the conditions under which the optical mode
and the mirror vibrational mode are entangled, we consider
the logarithmic negativity EN , a quantity which has been
already proposed as a measure of entanglement [26]. In the
CV case, EN can be defined as [27]

 EN � max�0;� ln2���; (11)

where �� 	 2�1=2f��V� � ���V�2 � 4 detV�1=2g1=2, with
��V� 	 detA� detB� 2 detC, and we have used the 2

2 block form of the CM

 V 	
A C
CT B

� �
: (12)

Therefore, a Gaussian state is entangled if and only if
�� < 1=2, which is equivalent to Simon’s necessary and
sufficient entanglement nonpositive partial transpose crite-
rion for Gaussian states [28], which can be written as
4 detV <�� 1=4.

We have made a careful analysis in a wide parameter
range and found a parameter region very close to that of
recently performed optomechanical experiments [29], for
which a significative amount of entanglement is achiev-
able. Figure 1 shows EN versus the normalized detuning
�=wm for two different masses, 5 and 50 ng: Opto-
mechanical entanglement is present only within a finite

interval of values of � around � ’ wm. The robustness of
such an entanglement with respect to the mirror’s environ-
mental temperature is shown in Fig. 2. The relevant result
is that for the 5 ng mirror optomechanical entanglement
persists for temperatures above 20 K, which is several
orders of magnitude larger than the ground state tempera-
ture of the mechanical oscillator. For the 50 ng mirror,
entanglement vanishes at lower temperatures (Fig. 2).
Figures 1 and 2 refer to Q � 105, but we found that
entanglement persists even for Q ’ 104, although it be-
comes much less robust against temperature. In this case,
entanglement persists up to 3 (1) K for a 5 (50) ng mirror.

We finally discuss the experimental detection of the
generated optomechanical entanglement. In order to mea-
sure EN at the steady state, one has to measure all ten
independent entries of the correlation matrix V. This has
been recently experimentally realized [30] for the case of
two entangled optical modes at the output of a parametric
oscillator. In our case, the measurement of the field quad-
ratures of the cavity mode can be straightforwardly per-
formed by homodyning the cavity output using a local
oscillator with an appropriate phase. Measuring the me-
chanical mode is less straightforward. However, if we
consider a second Fabry-Perot cavity C2, adjacent to the
first one and formed by the movable mirror and a third
fixed mirror (see Fig. 3), it is possible to adjust the pa-
rameters of C2 so that both the position and the momentum
of the mirror can be measured by homodyning the C2

output. In fact, assuming that the movable mirror has unit
reflectivity at both sides so that there is no light coupling
the two cavities, the annihilation operator of the second
cavity a2 obeys an equation analogous to the linearized
version of Eq. (2c),

 � _a2 � ���2 � i�2��a2 � iG2�2�q�
��������
2�2

p
ain

2 �t�; (13)

where �2, �2, �2, and ain
2 �t� are the bandwidth, the effec-

tive detuning, the intracavity field amplitude, and the input
noise of C2, respectively. Moreover, G2 � �wc2=L2�
����������������
@=mwm

p
, where wc2 and L2 are the frequency and the
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FIG. 1. Plot of the logarithmic negativity EN as a function of
the normalized detuning �=wm in the case of an optical cavity of
length L � 1 mm, driven by a laser with wavelength 810 nm and
power P � 50 mW. The mechanical oscillator has a frequency
wm=2� � 10 MHz, a damping rate �m=2� � 100 Hz, and its
temperature is T � 400 mK. The solid line refers to a mass m �
5 ng and finesse F � 1:07
 104, while the dashed line refers to
a mass m � 50 ng and finesse F � 3:4
 104.
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FIG. 2. Plot of the logarithmic negativity EN versus the mirror
temperature. The solid line refers to a mass m � 5 ng, detuning
� � wm, and finesse F � 1:07
 104; the dashed line refers to a
mass m � 50 ng, � � wm=2, and finesse F � 3:4
 104. The
other parameters are those of Fig. 1.
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length of C2, respectively. The presence of the second
cavity affects the mirror dynamics, which is no more
exactly described by Eqs. (5). However, if C2 is driven
by a much weaker intracavity field so that j�2j � j�sj, its
backaction on the mechanical mode can be neglected and
the relevant dynamics is still well described by Eqs. (5).

If we now choose parameters so that �2 � wm � k2,
G2j�2j, we can rewrite Eq. (13) in the frame rotating at
�2 � wm for the slow variables �~o�t� 	 �o�t� expf�iwmtg
and neglect the terms rapidly oscillating at the frequency
2wm, so to get [15,18]

 � _~a2 � ��2�~a2 � i
G2�2���

2
p �~b�

��������
2�2

p
~ain

2 �t�; (14)

where �b � �i�p� �q�=
���
2
p

. If �2 � G2j�2j=
���
2
p

, the
cavity mode adiabatically follows the mirror dynamics
and one has �~a2 ’ i�G2�2=�2

���
2
p
��~b�

�����������
2=�2

p
~ain

2 �t�.
Using ~aout

2 �
��������
2�2

p
�~a2 � ~ain

2 [21], we finally get

 ~a out
2 � i

G2�2������
�2
p �~b� ~ain

2 �t�; (15)

showing that, in the chosen parameter regime, the output
light of C2 gives a direct measurement of the mirror
dynamics. By changing the phases of the two local oscil-
lators and by measuring the correlations between the two
cavity outputs, one can determine all of the entries of the
CM V and from them numerically extract the logarithmic
negativity EN by means of Eq. (11).

In conclusion, we have shown that a Fabry-Perot cavity
with an oscillating micromirror and driven by coherent
light can produce robust and stationary entanglement be-
tween the optical intracavity mode and the mechanical
mode of the mirror. The amount of entanglement is quan-
tified by the logarithmic negativity and surprisingly robust
against increasing temperature: For experimental parame-
ters close to those of recently performed experiments [29],
entanglement may persist above 20 K in the case of a 5 ng
mechanical oscillator. Finally, we suggest a readout
scheme that allows a full experimental characterization
of the CV Gaussian steady state of the system and, hence,
a measurement of the generated entanglement.
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FIG. 3 (color online). Schematic description of the proposed
experiment, including the second Fabry-Perot cavity on the right
for the detection of the mechanical motion.
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