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We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple
model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning
network this dynamics shows at low temperature a nontrivial dependence on the wave vector which is very
different from the one observed in dense glass-forming liquids. At high wave vectors the relaxation is due
to the fast cooperative motion of the branches of the gel network, whereas at low wave vectors the overall
rearrangements of the heterogeneous structure produce the relaxation process.
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In gels, the deep connection existing between their un-
usual dynamics and the open network characterizing their
structure is still not understood [1,2]. In the dramatic slow-
ing down of the dynamics accompanying the gel formation,
the relaxation functions are often stretched and/or, most
remarkably, compressed; i.e., the time correlators decay
faster than an exponential [3—7], showing a complex de-
pendence on length scale. These findings suggest that
different relaxation mechanisms interplay at a microscopic
level, which have not been elucidated yet [8,9]. In the
present Letter, we show that the formation of the gel net-
work does induce a nontrivial length scale dependence of
the dynamics in a simple model for colloidal gels. We use
molecular dynamics computer simulations to study the gel
formation from the equilibrium sol phase. Our results give
evidence that in the incipient gel, the relaxation at high
wave vectors is due to the fast cooperative motion of pieces
of the gel structure, whereas at low wave vectors the overall
rearrangements of the heterogeneous gel make the system
relax via a stretched exponential decay of the time corre-
lators. The coexistence of such diverse relaxation mecha-
nisms is determined by the formation of the gel network
(i.e., the onset of the elastic response of the system) and it
is characterized by a typical crossover length which is of
the order of the network mesh size. This is the first work
where such a characterization of the gel dynamics in
colloidal systems has been achieved, thus making impor-
tant progress as compared to previous numerical studies
[9-12].

In colloidal suspensions at low volume fractions gelation
competes and/or interplays with phase separation. As a
consequence, coarsening or ordering processes due to the
underlying thermodynamics often interfere with the gel
dynamics. Whereas in the experiments the time scale
typical of the micro- or macrophase separation is often
much longer than the observation time scales [3,4], this is
not the case in numerical studies using traditional models
for colloidal suspensions, where the investigation of the gel
dynamics has been until now severely hindered [8§—11]. To
overcome this problem, we have developed a model in
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which directional interactions are able to produce a persis-
tent gel network at relatively high temperatures, where
phase separation does not occur. The model consists of
identical particles of diameter o, our unit of length, that
interact via short-ranged two- and three-body terms. The
two-body term gives rise to a narrow well of depth €, our
unit of energy, whereas the three-body term makes the
angle between three neighboring particles unlikely to be
smaller than 70°. As a consequence, at low temperatures
there is a competition between local structures that are
compact (due to the two-body terms) and open (due to
the three-body terms). More details on the potential can be
found in Refs. [13,14]. Differently from other recent mod-
els where a fixed connectivity is imposed with the same
aim [10], here it is the balance between the two-body and
three-body terms that will naturally limit the effective
functionality of our particles at low temperatures, produc-
ing an open network with a certain local rigidity [15].
With these interactions we have done microcanonical
simulations using the Verlet algorithm with a time step of

0.002, where time is measured in units of \/mo?/€, with m
as the mass of a particle. The number of particles is 8000
and the size of the simulation box is L = 43.09, which
corresponds to a volume fraction of 0.05 (or a particle
density of 0.1), and the temperatures 7' are 5.0, 2.0, 1.0,
0.7, 0.5, 0.3, 0.2, 0.15, 0.1, 0.09, 0.08, 0.07, 0.06, 0.055, and
0.05. We carefully equilibrated the system and averaged the
results over five independent runs. As shown in Ref. [13],
there is no sign of a phase separation in this temperature
range. At low T particles are linked by long-living bonds
and, via a random percolation process, form an open net-
work made of chains (particles with coordination number
2) connected by nodes (particles of coordination number
3). The mean value of the chain length distribution between
two nodes of the network is 10, giving the typical mesh
size. Such a simple structure of the gel network is a specific
feature of this model, as compared to other recent studies
[9-11], making it very useful to investigate the connection
between dynamics and structural features. The static struc-
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ture factor shows at intermediate and small wave vectors
the increase typically found in network forming systems
[1] (see inset in Fig. 1). In this T region the relaxation times
measured from particle diffusion and density fluctuations
increase with decreasing T quicker than an Arrhenius law.
These static and dynamic properties are indeed very simi-
lar to the ones found in real colloidal gels [1,2,16].

In Fig. 1 we show the time dependence of (r*(f)), the
mean squared displacement (MSD) of the particles for all
temperatures investigated. For high 7, due to the
Newtonian dynamics, one finds at short times the ballistic
behavior (r%(1)) « 1> followed at = 1.0 by a crossover to a
diffusive behavior, i.e., (r?(¢)) =« t. Atlow T, apart from the
ballistic regime at short ¢, we see at t = 1 a weak shoulder
at around (r?) = 0.05, i.e., a localization length around 0.2,
due to the onset of the caging regime in which a particle is
trapped by its nearest neighbors. At T = 0.05, more than
97% of the particles belong to the percolating network. We
have separately analyzed the motion of particles with
different connectivity within the network and found that
the motion of particles which are weakly connected to the
nodes (i.e., particles in the middle of a chain connecting
two nodes or particles belonging to dangling ends) is less
affected by this localization process. This indicates that the
gel has a very flexible structure since the chains can still
perform an oscillatory motion without breaking. Thus, the
movement of the overall local structure makes that the
MSD shows only a weak sign of this trapping, in contrast
to dense glass-forming systems [17]. Most remarkably the
MSD at low T shows at times ¢ = 10% a second shoulder
with a height of around 102, corresponding to a localization
distance of around 10. This localization process appears
when the spanning network is formed and the lifetime not
only of the bonds but also of the nodes becomes compa-
rable to the longest relaxation time [14]. It indicates that
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FIG. 1. Time dependence of the mean squared displacement of
a tagged particle for all T investigated. Note the presence of a
shoulder in the curves at low T at £ =~ 1.0 and ¢ =~ 10°. Inset:

Static structure factor of the system at 7 = 5.0, 0.3, 0.2, 0.15,
0.1, 0.09, 0.08, 0.07, 0.05.

the system is now viscoelastic over the observation time
scale and its typical length scale is comparable to the mesh
size of the disordered network [18].

Relevant information on the relaxation dynamics
over different length scales can be obtained from the
self-intermediate ~ scattering  function  F(q, ) =
N7'SN (explig - [F;(r) — 7;(0)]]), where g is the wave
vector. In Fig. 2 we show the ¢ dependence of 7, for all
temperatures investigated. Since at high T the relaxation
dynamics at short distances, i.e., large ¢, can be expected to
be of ballistic nature, it can be approximated by the func-
tion F,(g,t) = exp[—T¢*t*/(2m)] and therefore the re-
laxation time, defined as the time integral of the

correlator, should be given by 7, = (/mm/2T)/q. The
excellent agreement with our data at high 7 and large ¢
is shown by the plot of the quantity 7,¢q~/T in Fig. 2. At
lower T (but T > 0.1) the rescaled data lie higher than the
ones for high T. At these T the bond lifetime becomes
comparable to the typical relaxation time for g values that
correspond to distances of the order of a few interparticle
diameters. Therefore the small aggregates signaled by the
cluster size distribution [13] will have a lifetime longer
than the relaxation time on this length scale. Finally, both
at high and intermediate 7 the data deviate at the lowest g,
where one expects a crossover to the hydrodynamic de-
pendence 7,(q, T) « ¢~ 2 (see Fig. 2). At even lower T, the
data for large g appear to follow a different nearly-ballistic
regime, in that the curves at large ¢ are also almost hori-
zontal. We recall that as we lower the temperature the bond
lifetime is longer than the longest relaxation time in the
system and that the cluster size distribution significantly
widens [13]. E.g., at T = 0.055 most of the particles (more
than 97% at T = 0.05) belong to one percolating cluster
[14]. This nearly-ballistic regime at high g thus corre-
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FIG. 2.  Wave vector dependence of the relaxation time for all
T. Main figure: 7,q+/T vs ¢ showing the ballistic motion at high
T and large g. The bold line is the theoretical expectation for a
ballistic motion. Inset: 7,4>+/T Vs ¢ to check for the onset of the
hydrodynamic regime at small q.
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sponds to time and length scales where the MSD is strongly
dominated by the motion of the particles connected only
weakly to the nodes; i.e., it is due to the fast motion of the
branches of the gel network.

The length scale g = 1.0 marks the crossover to a differ-
ent dynamic regime. In fact, for wave vectors less than 1.0,
i.e., distances that are comparable or larger than the length
scale of the mesh size, we find strong deviations from the
previous g dependence in that 7, increases rapidly with
decreasing g. This strong g dependence, which resembles
the one found in dense glass-forming liquids, is here ob-
served at wave vectors that correspond not to an interpar-
ticle distance, but to the mesh size of the network. Note that
the formation of the gel network induces a correlation
length rapidly increasing with decreasing 7', and in fact
the hydrodynamic regime at the lowest T sets in only at
length scales that are larger than the size of the simulation
box (see inset of Fig. 2).

We now discuss in more detail the 7- and g dependence
of F,(g, t), which give us further insight in the dynamics. In
Fig. 3 we show F(q, 1) as a function of ¢/7,(g, T) for g =
0.55. At high temperatures this wave vector corresponds to
the crossover from the trivial ballistic regime to the hydro-
dynamic one; i.e., isolated particles have a significant
probability to collide before making a displacement of
the order of 27/q (leading to an exponential decay of
the correlation function). The cluster size distribution in-
dicates the presence of small aggregates [13] but the bond
lifetime is smaller than the relaxation time on this length
scale. Therefore, the small clusters that move ballistically
break up before they have made a displacement of the order
of 27r/q (which would lead to a Gaussian decay). Hence
the overall relaxation on this length scale is faster than
exponential and basically follows a compressed exponen-
tial (CE). With decreasing T this exponent diminishes
monotonously to around 0.58 at 7 = 0.05, giving a
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FIG. 3. F,(q,t) vs t/7,(q, T) for ¢ = 0.55 and the indicated
temperatures. Inset: The same data in a log-lin representation.

The bold dashed line is a compressed exponential with exponent
1.5.

stretched exponential (SE) decay. This is due to the change
of the bond lifetime and of the cluster size distribution: If
the bond lifetime is comparable to 7,(g, T) but the size of
the aggregates is still small, one expects a nearly exponen-
tial relaxation. With decreasing 7T, the particles aggregate
in long-living structures and form a percolating network.
Therefore the relaxation curves become more stretched
and, at the lowest temperature considered, can be well
approximated by a stretched exponential. This pronounced
stretching can be understood from the very heterogeneous
structure of the network on the length scale of the size of
the mesh.

Let us now analyze F(g, t) at the lowest temperature
T = 0.05, for different values of g, as a function of
t/74(q, T); see Fig. 4. For large ¢ the curves fall all on a
master curve and in the inset we show that the latter is well
described by a CE with an exponent around 1.5. At this 7,
finite clusters and free particles are extremely rare and the
main contribution to the particles MSD comes from the
particles of the network which are less connected to the
nodes. This indicates that, for wave vectors g correspond-
ing to a few interparticle distances and smaller, the motion
of the branches of the percolating cluster leads to a com-
plete decay of F(g, t). Hence their mean free path is larger
or comparable than 277/g and for these intermediate and
large wave vectors the motion can be considered as nearly
ballistic. Note that these moving entities do have different
masses and therefore different thermal velocities. Since
F,(q, 1) is the average over the different local relaxation
functions, assuming that each of them is of the Gaussian
form given above, it must be expected that F(g, t) decays
more slowly than a Gaussian in time, i.e., that the exponent
in the CE is less than 2.0, in agreement with our results, see
Fig. 4.

For values of ¢ = 1.0 the data for F,(qg, #) no longer fall
onto a master curve and the shape of the correlator be-
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FIG. 4. F,(q,t) vs t/7,(q, T) for T = 0.05 and the indicated
wave vectors. Inset: The same data in a log-lin representation.
The bold dashed line is a compressed exponential with exponent
1.45.
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comes a stretched exponential (inset of Fig. 4). Thus only
for these intermediate and large length scales the system
shows a relaxation dynamics similar to the one found in
dense glass-forming liquids; i.e., the presence of the dis-
ordered structure on this length scales leads to a heteroge-
neous dynamics characterized by a stretched exponential.
We emphasize that the inset of Fig. 2 well illustrates this
peculiar length scale dependence of the relaxation dynam-
ics at T = 0.05, which is crucially determined by the net-
work. Once the nodes are persistent enough as compared to
the relaxation times at small wave vectors (i.e., over dis-
tances larger than the network mesh size), this network
induced relaxation regime sets in: The network determines
the coexistence of such diverse relaxation mechanisms on
different length scales.

Finally, an interesting point which deserves further in-
vestigation is the relation between the compressed expo-
nential decay of the time correlators with the experimental
observations [3,4,6,7]. Although this issue is far beyond the
aim of the present Letter, it is worth to recalling that here
we have approached the gel formation from the equilib-
rium sol. As a consequence, even at the lowest temperature
the distribution of the thermal velocities of the moving
entities is the equilibrium one and hence each contribution
to the average F(q, 1) is a Gaussian function of the time. In
contrast to this, in experiments which study far from
equilibrium gels, dipolar forces due to frozen-in stresses
might produce a power law distribution of velocities of the
moving entities. Hence such forces might be responsible
for the nearly-ballistic dependence of the relaxation time
on the wave vector and of CE decay of time correlators
with an exponent ~1.5 [3-5]. Similarly, if the system is
sheared and the perturbation gives (at least locally) rise to a
linear displacement in time, one can again expect this type
of relaxation [4,19]. Interestingly, in the nonergodic gels
just mentioned the relaxation is supposed to occur via the
motion of the connecting branches of the gel network and
formation or breaking of network nodes, see Ref. [5], as we
actually find here. These considerations suggest that an
analogous analysis of the length scale dependence of the
dynamics in this model in the far from equilibrium gel,
obtained by deeply quenching the system, would signifi-
cantly contribute to the understanding of the experimental
findings.

In conclusion, our study shows that in colloidal gels at
low volume fractions the formation of the gel network
corresponds to the coexistence of very different micro-
scopic relaxation mechanisms. Once that the network is
formed, fast collective motions of subentities (branches,
etc.) of the incipient gel drive the relaxation on small
length scales, whereas the relaxation on large length scales
is due to the overall rearrangements of the disordered
structure. In our model this corresponds to decays of
time correlators as diverse as CE at high wave vectors vs
stretched exponential decays at low . The mechanisms

discussed here are likely to affect the stress transmission
within the gel network and might therefore play a role also
in the nonergodic phase investigated in the experiments
[3,4,6,7]. We suggest the relaxation mechanisms eluci-
dated here and the length scale dependence of dynamics
to be a general feature in gels, coupling the complex slow
dynamics of glassy systems to the structural variety and
tunability of gelling materials.
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