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Paramagnetic particles in a liquid above a solid dynamically self-assemble into two-dimensional (2D)
viscoelastic clusters in a precessing magnetic field if the precession angle exceeds the magic angle.
Hexagonal clusters rotate with a frequency proportional to the precession frequency of the magnetic field.
The rotation is explained by viscoelastic shear waves excited in the clusters that can be visualized slightly
above the magic angle. The cluster rotation and the visualization of viscoelastic modes are independent
techniques to probe the rheological properties of the cluster. We find agreement between both techniques
when determining the 2D cluster viscosity 1, = 10~!! N's/m.
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Many important natural systems, from humans to bacte-
rial colonies to weather patterns, require a continuous
dissipation of energy to be dynamically sustained in their
actual complex structure [1]. Ensembles of small polar-
izable objects under dynamic external fields provide one
simplified laboratory scale model system for dynamic self-
assembly [2-9]. Even simple systems like two paramag-
netic particles [4], or two magnetic holes [5,6] in a rotating
magnetic field dynamically self-assemble into doublets.
The doublets rotate in the surrounding liquid with a fre-
quency below the frequency of the rotating magnetic field.
The instantaneously induced dipolar forces favor an as-
sembly of paramagnetic particles into pearl chains [7]. For
sufficiently low frequencies the hydrodynamic friction
cannot prevent the chains, doublets or asymmetric clusters
from permanently aligning and rotating with the rotating
magnetic field. However symmetric assemblies, such as
ferrofluid drops [8,9], also rotate in a precessing field. Thus
a different mechanism should be responsible for the rota-
tion of symmetric clusters.

Here we focus on the dynamic self-assembly of sym-
metric 2D colloidal clusters. First we show that few para-
magnetic particles, initially arranged in a colloidal liquid,
can dynamically self-assemble into a viscoelastic solid
cluster. Then we show that viscoelastic shear waves excited
in the clusters are the base mechanism for the cluster
rotation. This provides understanding of dynamic self-
assembly of paramagnetic particles into symmetric
clusters and also enables probing the cluster’s rheological
properties.

We used polystyrene paramagnetic particles with a ra-
dius a = 1.4 pum and an effective magnetic susceptibility
Xbead = 0.17 (Dynabeads M-270). A water drop containing
~7 X 10° beads/ml was placed on a glass plate. The
particles sediment above the glass-water interface, then
float a few nanometers above the surface because of the
electrostatic repulsion between the negatively charged par-
ticles (COO™ group) and the negative glass surface caused
by dissociation of the silanol groups [10].
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By tracking an individual colloidal particle we deter-
mined the particle diffusion coefficient as D = 0.14 =
0.05 um?/s, from this we estimated the hydrodynamic
drag coefficient as fi.,q = kzT/m,,aD = 27.7 where kg
is Boltzmann’s constant, T the temperature, and 7,, is the
viscosity of the water [11]. Three coils with the main axes
along the x, y, and z directions were used to produce a
magnetic field up to H ~ 0.5 X 10° A/m in each direction
and precessing with an angular frequency () at an angle ¥
with respect to the axis normal to the glass plate (see
Fig. 1). The particles were observed by using an optical

FIG. 1 (color online).

Schematic showing a hexagonal cluster
in a precessing field H of angular frequency (). In the bottom
line are 2 microscope images of a liquid colloidal assembly with
¥ < Opagic (¥ =52.9°, H=12693 A/m) and an assembly of
nucleated colloidal clusters with & > Jpe5. (3 = 90.0°, H =
2148 A/m) that rotate in the precessing field. Here Dmagic =
54.7° and Q =352 571

© 2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.98.028301

PRL 98, 028301 (2007)

PHYSICAL REVIEW LETTERS

week ending
12 JANUARY 2007

microscope (Leica, DMLP), and videos for image analysis
were taken either at 250 fps (Fastcam Super 10 K Photron),
or at 30 fps (Basler A311F, color camera).

In the absence of a magnetic field, or in a field precess-
ing with an angle ¢ = Jugic (Ymagic = 54.7° is the zero of
the second Legendre polynomial P;(cosdpeic) = 0), the
floating particle formed a 2D liquid (number density n, ~
10" m~2) in the xy plane. Application of a precessing
magnetic field (0 > 10 s~ !, 9 > Dmagic) leads to the for-
mation of small rotating 2D solid clusters, like doublets,
triangles, squares, or hexagons, separated from each other
by a phase depleted of colloidal particles (Fig. 1 bottom
right).

The dynamic cluster assembly can be explained in terms
of the time-averaged dipolar interactions between the in-
dividual induced magnetic dipoles and the repulsive stabi-
lizing (electrostatic or steric) interaction between the
particles of the cluster. In the cluster interior, the dipolar
interaction arising from opposite neighboring particles
cancel each other. The only particles feeling a significant
dipolar force are those located at the border of the cluster.
In published work on the effect of dipolar interactions on
patterns in 2D monolayers, or ferrofluid films, the inter-
actions vanish in the bulk and their effect can be expressed
with a continuum description in terms of a dipolar line
tension A [12,13], that is a 2D analog of the surface tension
in 3D systems. Since the induced magnetic moments of the
particles are tilted with respect to the normal to the glass
surface, the dipolar line tension of our cluster consists of an
isotropic part and an anisotropic part:

Adip = Ais + Aanis COSZQZ), (1)

where ¢ is the angle between the in-plane magnetic field
and the in-plane vector n, normal to the 2D cluster bound-
ary. At high frequencies of the precessing magnetic field
the angle ¢ rotates with the frequency of the field and the
cluster cannot follow this fast rotation. The isotropic line
tension is the only contribution that remains after time
averaging. Magic angle spinning nuclear magnetic reso-
nance (MAS-NMR) is a well-known technique for time
averaging the nuclear dipole interactions to zero, and to
narrow NMR peaks by spinning the sample at the magic
angle around the magnetic field. Here we spin the magnetic
field around the sample. Similar effects to those in MAS-
NMR make A of our colloidal clusters vanish at ¥yqgic-
We find that A;; « —H?P,(cosd), such that A, <O for
¥ < Uagic and Ajg > 0 for & > O,,6ic. The effect of the
time-averaged dipolar interactions is a negative line ten-
sion which destabilizes the cluster for ¥ < ¥
Consequently, we observe a homogeneous distribution of
particles for ¢ < ¥, (Fig. 1, bottom left). For angles
exceeding the magic angle a positive tension compresses
the colloidal particles to form closed packed solid clusters
(Fig. 1, bottom right). The tension pulls the particles
together until repulsive electrostatic or steric interactions
balance the compressive effect. The particles dynamically
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FIG. 2 (color online).

Normalized cluster rotation frequency as
a function of the angular frequency of the external field for ¢ =
90.0°. The blue (or gray) squares refer to a doublet of paramag-
netic particles and the black circles to the hexagon. The con-
tinuous black line is a fit using Eq. (5). A video of a rotating
hexagon and a nonrotating doublet can be viewed in [13].

self-assemble into a solid cluster of radius R, and we
expect the cluster to acquire a shear modulus G/ =
Ais/R, that is of the order of the pressure compressing
the cluster.

In Fig. 2 we show the normalized cluster rotation fre-
quency w/H? as a function of the angular frequency of the
magnetic field ) for a doublet (squares) and for a hexago-
nal cluster (circles) for precession in-plane (9 = 90°). At
low frequency, doublets rotate faster than hexagons and
synchronously with the precessing field. For increasing
frequencies, higher than ~100 s~!, the doublets are not
able to follow the field dynamics and asynchronously
rotate with lower and lower rotation frequency until they
stop rotating at rates higher than ~250s~!. Con-
versely, hexagons rotate with a frequency proportional to
the square of the external field, itself increasing with the
precession frequency. A movie of the motion can be
viewed in [13]. The rotation of doublets and longer chains
has been shown to be due to the anisotropy of the magnetic
susceptibility tensor [4-—7]. For symmetry reasons the
magnetic susceptibility tensor of hexagonal clusters is
isotropic. Our experiments therefore suggest, that the clus-
ter rotation of the hexagon at high frequencies originates
from a mechanism which is absent in the doublets and
longer particle chains. Doublets and chains, in contrast to
larger clusters, are 1D assemblies that cannot be shear
deformed. We will show that dissipative shear deforma-
tions, traveling around the cluster with the frequency of the
precessing magnetic field, cause the cluster rotation ob-
served at high precession frequencies.

For the cluster of volume V. to rotate, a finite magnetic
torque Tiaen = oV.-M X H, is required to counteract the

viscous torque T = f7,,R.w arising from the rotation
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of the cluster inside the viscous liquid (of viscosity 7,,).
Here pq is the permeability of vacuum, f the dimension-
less drag coefficient of the cluster [14], M(r) =
[" o dt' xeg(t — ¢ )H(Y) is the cluster magnetization and
Xeft 18 the effective dynamic magnetic susceptibility tensor.
A finite torque only arises when the magnetization M and
magnetic field H are linearly independent vectors. In a
rotating magnetic field, doublets and longer chains of
paramagnetic particles rotate because the major axes of
their anisotropic susceptibility tensors lag behind the mag-
netic field [7,9] and cause M and H to point in different
directions. However, in a dynamic magnetic field the mag-
netization M of the object can be linearly independent of
the magnetic field, even if the susceptibility is isotropic,
because the magnetization is collinear to the magnetic field
from a preceding time. For an hexagonal cluster having an
isotropic susceptibility tensor, only the memory effect of
the susceptibility can cause a rotation. We find a magnetic
tOrqUe Tppaen = Mo V.H?sin? 9 x/jze, that is proportional to
the imaginary part of the isotropic dynamic magnetic
susceptibility x;({) — w), with the frequency of rotation
Q) — w of the field in the reference frame of the cluster.
The cluster rotates due to internal relaxation processes that
manifest themselves as peaks in w o« )(eff(Q — w). The
precession frequency causing a peak in y.; and hence in
w, should be comparable to the relaxation rate of the
internal cluster relaxation process. In a single paramag-
netic colloidal particle typical relaxation frequencies of,
e.g., Néel relaxations, are in the order of GHz, which are
too large to cause significant values of x/;({) — w) in the
quasistatic regime ) =~ 1-100 s~!. In paramagnetic col-
loidal clusters, however, the viscoelastic cluster relaxation
processes have relaxation rates of the order 7y, =
HoGresaXteaH2/ MR = 10 kHz, where 7, is the effec-
tive 2D viscosity of the cluster. The rotation frequency data
of the hexagon in Fig. 2 is hence the low () wing of the
viscoelastic relaxation peak. Non symmetric clusters,
thicker than colloidal chains, rotate due to both shape
anisotropy and viscoelastic relaxation. The former effect
dominating at low, the latter at high frequencies.

To understand the rotation of the symmetric cluster we
calculate the dynamic cluster deformation u, caused by the
dipolar interactions within the cluster. We consider the
hexagonal cluster as a 2D incompressible viscoelastic con-
tinuum, satisfying the elasticity equation:

~Vp+G.Au=0 2)

where G, is the shear modulus and p > 0 is the nonmag-
netic (electrostatic or steric) pressure required to ensure the
incompressibility of the cluster. Since the dipolar forces
only act at the cluster boundary, they enter into (2) only via
the boundary condition:

d(Agipt)

=o0-'n 3)
as

which states that the elastic stress normal to the boundary

is caused by the dipolar line tension gradient. In Eq. (3) t,
n, and s denote the tangential vector, normal vector, and
arclength to the cluster boundary, and o = —pl +
G.(Vu + (Vu)?) is the elastic stress tensor. Solving the
Eq. (2), subject to the boundary condition (3) imposed by a
precessing field, to first order in the deformation of
the boundary, we predict a radial and azimuthal distortion
of u,/R. = —2Ayise ?/3(As + G.R,.), and uy/R. =
iAamise 2?(3Aig + 5G.R.)/3G R (A + G.R,) [13]. For
a purely elastic solid, G. = G, this distortion is in phase
with the magnetic field and hence cannot cause a rotation
of the cluster. However, for a viscoelastic colloid, G, =
G. — iG", where G” is the loss modulus, the shear wave
lags behind the magnetic field and can cause cluster rota-
tion. The simplest model of a viscoelastic colloid is the
Voigt-Kelvin model [15], with a frequency independent
storage module and viscosity G, = A /R, — 2i(Q) —
)7,. Using this model we predict a radial distortion

am%(/\ls + l(Q B w)”’hR )6_21¢
3(A2 + (Q — w)*n2R?)

u,/R, = C))

The distortion of the cluster creates a demagnetization
anisotropy that lags behind the same amount the distortion
lags behind. Hence we expect the loss part of the suscep-
tibility to be proportional to the loss part of the shear
modulus: x/ = 3mau!//8R%. For small precession fre-
quencies x/; increases linearly with the precession fre-
quency. As a consequence, the rotation frequency of the
hexagonal clusters increases linearly with the precession
frequency:

ﬂ _ 277T7]C (1 —P2) 11‘1(31/4 7/1) Q (5)
H2 SnwaHz 9P% 2(21/4 ) fbeadeead

By fitting the normalized cluster rotation frequency of
Fig. 2 with Eq. (5) we estimate the 2D viscosity as 1, =
6.4 X 10712 Nsm™!. If we write the cluster viscosity as
n. =d-mn,, where 1, is the water viscosity and d is a
length, we obtain a value of d ~ 6 nm consistent with a
minimum interparticle distance, as dictated by the electric
double-layer interparticle repulsion. This a posteriori jus-
tifies the use of a continuum description even for an
ensemble as small as seven particles. The major dissipation
within the cluster occurs due to liquid shear fluxes in the
region where the colloidal particles come close to each
other. Equation (5) predicts that the cluster rotation fre-
quency increases by decreasing the precession angle to-
ward the magic angle. In Fig. 3, we test this prediction by
plotting the normalized rotation frequency of the hexago-
nal cluster w/H? as a function of P,(cosd®) for ) =
63 s~! and find agreement with Eq. (5) when using the
above cluster viscosity. Two movies in [13] show the
slower and faster rotation of the hexagon at ¢ = 90° and
58°.

Finally, we test our model by directly observing the
shear deformation of the cluster. This is possible at an
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FIG. 3. Normalized cluster rotation frequency vs P,(cos®) for
Q =63 57!, where the continuous line is a fit to Eq. (5). Two
movies showing the speeding up of the hexagon are in [13].

angle ¥ = 67°, slightly above the magic angle, since there
the perturbation of the anisotropic time dependent line
tension is large compared to the marginally stabilizing
isotropic tension, resulting in large deformations. We re-
corded a high speed video (250 fps) of the cluster and took
the Fourier transform of the elliptical mode as u,()/) =
: Z?;l T [0 g2 'r= ‘Pf)r(goj, 1)dt, where r(¢;, 1) are the sep-
arations of the six outer colloidal particles of the hexagon
from the central one. In Fig. 4 we plot u,({}') versus '
(inset) and in [13] we show a movie of a strongly deformed
rotating hexagon. As expected, we observe a pronounced
peak of the deformation at the frequency )/ = 2(Q) — w).
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FIG. 4 (color online). Elliptic deformation u, as a function of
the frequency of the external magnetic field for ¢ = 67°. In the
blue (or gray) inset on the left side we show the deformation in
Fourier space for an angular frequency of 70 s™! and H =
2341 A/m. A movie of the elastic shear wave traveling around
the rotating hexagon can be viewed in [13].

The strength of this peak is then plotted as a function of the
precession frequency () (squares). A fit according to the
absolute value of Eq. (4) (continuous line) yields a second
independent way to determine the 2D cluster viscosity. In
this case we find a higher 2D viscosity, 7, = 8.6 X
107" Nsm™!, since the separation d = 100 nm between
the beads increases close to the magic angle. Since the
value of d is determined by the range of the electric double-
layer repulsion, adding salt should reduce the cluster vis-
cosity by reducing the volume where the dissipation oc-
curs. Indeed, performing the experiments in a 1 mM NaCl
solution reduces the cluster rotation frequency by a factor
of ~20.

In summary, we have studied the dynamic self-assembly
of small colloidal clusters in a precessing magnetic field.
The assembly is driven by dipolar interactions that, on
average, are attractive for precession angles above the
magic angle. At the magic angle, the clusters undergo a
liquid to solid transition, as determined from their elastic
shear moduli. The rotation of symmetric hexagonal clus-
ters is caused by dissipative elastic shear waves traveling
around the cluster. Measurements of the clusters rotation
frequencies give direct access to the viscoelastic properties
of colloidal clusters.

We acknowledge discussions with Colin Byfleet.
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