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Classical molecular dynamics simulations of the folding of alanine peptides in aqueous solution are
analyzed by constructing a deterministic model of the dynamics, using methods from nonlinear time series
analysis. While the dimension of the free energy landscape increases with system size, a Lyapunov
analysis shows that the effective dimension of the dynamic system is rather small and even decreases with
chain length. The observed reduction of phase space is a nonlinear cooperative effect that is caused by
intramolecular hydrogen bonds that stabilize the secondary structure of the peptides.
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The complexity of a dynamic system represents a well-
established concept in the theory of nonlinear dynamics. It
is often associated with the fact that the ‘‘effective dimen-
sion’’ of the system [1], that is, the dimension of the sub-
space a trajectory ~x�t� 2 Rn will occupy in the course of its
time evolution _~x�t� � ~f� ~x�t��, can be much smaller than n,
the dimension the problem is formulated in. This dimen-
sionality reduction is caused by nonlinear couplings which
give rise to cooperative or synchronization effects and
consequently reduce the effective number of degrees of
freedom. The significance of the concept becomes appar-
ent in the case of a dissipative chaotic system, whose
effective dimension typically is a noninteger number.
Apart from its conceptional value, the effective dimension
of a dynamic system is of practical interest since it may be
calculated from measured or simulated data, e.g., by esti-
mating the correlation dimension [2] or the Lyapunov
exponents from which the Kaplan-Yorke dimension [3]
may be obtained.

In this Letter, we wish to apply the concept of dimen-
sionality to the interpretation of classical molecular dy-
namics (MD) simulations [4]. While MD simulations
describe biomolecular processes such as folding and mo-
lecular recognition in atomistic detail (i.e., 3N-6 coordi-
nates for an N-atomic system), it is clear that the many
geometrical constraints of the molecule (e.g., covalent and
hydrogen bonds) result in a considerable reduction of the
effective number of degrees of freedom. In practice, the
structural dynamics of biomolecules is often described in
terms of the molecule’s free energy surface (the ‘‘energy
landscape’’ [5,6]), which is represented as a function of
empirically introduced ‘‘reaction coordinates’’ (e.g., the
fraction of native contacts formed or the root mean squared
distance to the native structure). Alternatively, one may
employ a principal component (PC) analysis of the trajec-
tory [7,8], that is, a linear transformation of the coordinate
system such that the instantaneous linear correlations be-
tween the variables are removed. Ordering the eigenvalues
of the transformation decreasingly, it has been shown that a
large part of the system’s fluctuations can be described in
terms of only the first few PCs, which may serve as

reaction coordinates. While these coordinates in some
sense represent the essential dynamics of the system [9],
in general it is not clear how to determine the effective
dimension of a biomolecular MD simulation, since there
always is some ambiguity in the choice of the reaction
coordinates. As a first attempt to assess the complexity of a
biomolecular system, in this work we (i) perform MD
simulations of various peptide systems and extract time
series that account for their structural dynamics,
(ii) construct a deterministic model of the dynamics using
methods from nonlinear time series analysis, and
(iii) perform a Lyapunov analysis to calculate their effec-
tive dimension.

As molecular systems we have chosen the alanine pep-
tides Alan with n � 3, 5, 7, and 10 in aqueous solution (see
Fig. 1), for which 100 ns MD simulations at 300 K were

 

FIG. 1 (color online). MD snapshots of (left) an extended
conformation of Ala3 showing the central backbone dihedral
angles � and  , and (right) the �R helix conformation of Ala10

indicating the stabilizing n� �n� 4� hydrogen bonds.
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performed using the GROMACS program suite [10], the
GROMOS96 force field 43a1 [11], and the simple point
charge water model [12] (for details see Ref. [13]).
Unlike to proteins, these systems are too small to adopt a
stable native structure, but exhibit reversible folding and
unfolding of their secondary structure. Since this large
amplitude motion results in a strong mixing of internal
and global motion (while only the internal motion is of
interest), we choose internal coordinates to describe the
peptide structure, i.e., their (�k,  k) backbone dihedral
angles (k � 1; . . . ; n� 2), see Fig. 1. To circumvent prob-
lems associated with the fact that angles are circular var-
iables, the angles are mapped onto a Cartesian-like space
via x4k � cos�k; x4k�1 � sin�k; x4k�2 � cos k, and
x4k�3 � sin k, resulting in 4�n� 2� variables [13]. To
remove linear correlations, a PC analysis of the MD tra-
jectory ~x�t� is performed, yielding the PC analysis eigen-
vectors ~ui and the corresponding PCs vi�t� � ~x�t� � ~ui,
which serve as a time series for the subsequent analysis.

As a first example, Fig. 2 shows the time series vi�t�, the
distributions P�vi�, and the autocorrelation functions Ci�t�
obtained for the first two PCs of the Ala3 system. Both
distributions exhibit multiple peaks which correspond to
different conformational states of the peptide. For the first
component, the peak at v1 � �1:7 reflects the right-
handed helix conformation �R, while the peak at v1 �
0:2 reflects extended conformations of the peptide (see

Fig. 1). Invoking the second PC, the latter can be decom-
posed in the poly-L-proline II (PII) conformation and the
fully extended (�) conformation [14]. The transitions be-
tween these states occur on a 200 ps (�R $ �) and 20 ps
(PII $ �) time scale, respectively. While the three con-
formational states of Ala3 can be described using only two
PCs, the situation is more involved for the longer peptides.
For the Ala10 system, for example, Fig. 3 shows that the
distributions of the first two PCs are characterized by a
prominent double peak corresponding to an�R-type folded
state (see Fig. 1), and a large range of extended and
intermediate states corresponding to unfolded structures
of the peptide. To discriminate these states, in total eight
PCs are required. An analysis of the time evolution of the
first PC reveals collective conformational transitions, ac-
counting for the reversible folding and unfolding of the
secondary structure of the peptide.

Performing a PC analysis of a MD trajectory, only the
distribution of the first, say dEL, PCs exhibit multiple
peaks, while the remaining distributions P�vi� with i >
dEL are single peaked and approach a Gaussian shape with
increasing i [9]. That is, the distributions P�vi� with i >
dEL describe the fluctuations of the peptide within a spe-
cific conformational state, while the distributions with i �
dEL define these conformation states. Hence dEL can be
considered as the dimension of the free energy landscape
�G�fvig� / � lnP�fvig�, because �G shows nontrivial
structure only along the first dEL PCs. As listed in
Table I, dEL increases with system size, i.e., from 2 for
Ala3 to 8 for Ala10.
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FIG. 2 (color online). Time series vi�t�, distributions P�vi�,
and autocorrelation functions Ci�t� obtained for the first two
principal components of the Ala3 system. The solid black lines
represent the results of the MD simulation, the dashed red (or
gray) lines correspond to results from the nonlinear model of the
dynamics.
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FIG. 3 (color online). Same as in Fig. 2, but for the Ala10

system.
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It should be emphasized, however, that the energy land-
scape dimension dEL is conceptually different from the
effective dimension of the dynamics in phase space. In
principle, the latter can be obtained directly from a
Lyapunov analysis of the MD trajectory [15]. In practice,
though, the ubiquitous noise on the data prevents an accu-
rate calculation of the Lyapunov exponents, which account
for the sensitivity of the trajectory with respect to infini-
tesimal small deviations of its initial conditions. To over-
come this problem, we employ the methods of nonlinear
time series analysis [16] and construct a deterministic
model of the dynamics which reproduces the main features
of the MD data, but at a much better signal to noise ratio.

With this end in mind, we assume that the dynamics of
the system that produces the time series ~v�t� can be ex-
pressed by the Langevin equation

 

_~v�t� � ~f� ~v�t��� ~��t�: (1)

Here ~f describes the deterministic part of the dynamics,
while ~� denotes a stochastic driving term which represents
the fluctuations of all degrees of freedom we want to
ignore, including, e.g., high-frequency bond oscillations,
the motion of the solvent, and the realization of the external
heat bath. To obtain a simple model for the deterministic
part ~f of the dynamics, the following steps are taken. First,
we restrict the analysis to the first dEL PCs, thus disregard-
ing all components accounting for simple Gaussian fluctu-
ations. Since only the deterministic part is the subject of
the dimensionality reduction [the noise term ~��t� by defi-
nition explores all directions of phase space], we also
neglect the stochastic driving in Eq. (1). This is realized
by applying a simple noise reduction scheme, i.e., the
Savitzky-Golay filter [17] to the resulting trajectory ~v�t� 2
RdEL . The third step is to construct a state space in which
the trajectory ~v�t� shows a deterministic behavior. Since
~v�t� represents a projection of the original phase space
(that explicitly includes the positions and momenta of all
atoms of the system), in general we cannot expect that the
dimension dEL of the trajectory is sufficient for this pur-
pose. To account for a possibly higher-dimensional phase
space, we use an extension of the Takens embedding [18]
and embed the first (and most important) PC until this
component is reconstructed sufficiently well. Adding the

remaining dEL � 1 components and using a time delay �t,
the resulting embedding vector at time step tj reads

 ~v�tj� 	 ~vj

� �v1�tj�; v1�tj � �t�; . . . ; v1�tj � �m

� 1��t�; v2�tj�; v3�tj�; . . . ; vdEL
�tj��T; (2)

where m denotes the embedding dimension of the first PC,
resulting in a dimension dRS � dEL �m� 1 for the re-
constructed state space. For all systems considered, m � 9
and �t from 0.2 ps (Ala3) to 4 ps (Ala10) were used.

Knowing the state space, we are now in a position to fit a
deterministic nonlinear model to the data. Following
Farmer and Sidorowich [19], we employ a locally linear
model defined by the map

 ~v j�1 � Aj ~vj � ~bj; (3)

where Aj is a dRS 
 dRS matrix. Locally linear means that,
given the vector ~vj at time tj, the subsequent vector ~vj�1 at
time tj�1 is obtained in linear approximation, that is, the

model parameters Aj and ~bj are obtained by a least squares
fit which only uses the spatial neighbors of ~vj [16,20]. As a
consequence, the model parameters need to be calculated
for every time step of the model trajectory. To validate the
model, we again consider the distributions and autocorre-
lation functions of the first two PCs of Ala3 (Fig. 2) and
Ala10 (Fig. 3) and compare the modeled data to the results
obtained from the MD simulations. Reproducing the time
scales of the dynamics as well as the conformational
distribution in almost all details, the model accounts nicely
for the essential features of the MD data.

Let us now turn to the Lyapunov exponents �i; �i �
1; . . . ; dRS� of the peptide dynamics, which are calculated
through the Jacobian matrix Aj of the map (3). For all
systems considered, we found two positive exponents �1

and �2, which quantify the chaoticity of the dynamics in
phase space. We first consider the Kolmogorov-Sinai en-
tropy hKS, which is given by the sum of the positive
Lyapunov exponents [16]. Its reciprocal value �KS �
1=hKS is an estimate for the time span the evolution of
the trajectory can be forecasted. As shown in Table I, this
picosecond time scale increases with system size, thus
indicating that the structural dynamics of the larger pep-
tides is less chaotic than the dynamics exhibited by the
smaller systems.

To estimate the effective dimension dKY from the
Lyapunov exponents, we employ the Kaplan-Yorke con-
jecture [3]

 dKY � k�
1

j�k�1j

Xk

i�1

�i; (4)

where k is the number of exponents such that (if they are
ordered decreasingly) the sum of the first k exponents is
still positive or zero, whereas the sum of the first k� 1
exponents is already negative. Loosely speaking, the defi-

TABLE I. Comparison of dEL, the dimension of the energy
landscape, and dKY, the effective dimension of the dynamics, as
obtained for various alanine peptides. Also shown are nHB, the
average number of �R-type intramolecular hydrogen bonds, and
�KS, the reciprocal value of the Kolmogorov-Sinai entropy.

Ala3 Ala5 Ala7 Ala10

dEL 2 3 6 8
dKY 5.0 4.7 4.9 3.3
nHB � � � 0.03 0.6 2.4
�KS [ps] 3.8 3.7 5.9 8.0

PRL 98, 028102 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
12 JANUARY 2007

028102-3



nition of the leading term k in dKY assures that the phase-
space expanding (�i > 0) directions just counterbalance
the phase-space contracting (�i < 0) directions, thus war-
ranting an overall invariant phase-space volume. Table I
lists the resulting values of the effective dimension dKY

obtained for Ala3 through Ala10. Ranging from � 3 to 5,
the dimensions appear to be quite small, considering that it
accounts for the motion of thousands of atoms. Most
intriguing, though, is the fact that the effective dimension
decreases with system size, from 5 for Ala3 to 3.3 for Ala10.
This is in striking contrast to the behavior of the energy
landscape dimension dEL which, as expected, increases
with chain length.

To explain this finding, detailed analyses of the all-atom
MD trajectories were performed, which revealed that the
effect is caused by intramolecular interactions that stabilize
the secondary structure of the peptide. Most importantly,
this is achieved by intramolecular hydrogen bonds con-
necting the nth and (n� 4)th residues of the amino acid
chain, thus stabilizing the �R helix structure (see Fig. 1).
As shown in Table I, the average number of these hydrogen
bonds increases significantly, once the number of possible
�R-type bonds reaches three for Ala7. Remarkably, the
formation of stabilizing hydrogen bonds seems to signifi-
cantly reduce the effective dimension, although these
bonds are not stable but formed and broken on a nano-
second time scale.

It is interesting to note that this decrease of the effective
dimension is not observed for the energy landscape dimen-
sion dEL. Apparently, this is because the latter quantity is
defined in the linear framework of PC analysis theory,
whereas the effective dimension dKY is obtained from a
nonlinear description of the dynamics. In a similar vain,
other nonlinear methods for the analysis of biomolecular
dynamics have been proposed that are sensitive to non-
linear correlations and therefore may reduce the dimen-
sionality of the problem [21,22]. The effect of nonlinear
dimensionality reduction is supposedly even more impor-
tant for the folding of larger peptides and proteins, which
exploit a variety of stabilizing interactions and exhibit
significant cooperativity [23].

While the work presented here is only a first step
towards a nonlinear analysis of MD data, it may open
ways to address the larger problem of describing folding
processes. For example, we wish to study if the folding of
various structural motifs such as �R helices and � sheets
results in distinguishable properties of the corresponding
dynamical model. Another next step is to go beyond the
locally linear ansatz and construct analytical models of the
dynamics. Such analytical models would contain a set of
parameters which presumably depend on, e.g., experimen-
tal conditions, amino-acid sequence, and folding motifs.
The study of this parameter dependence could then shed
some light on the still elusive mechanism of folding.
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