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In terms of a multiscale approach based on the Landau-Ginzburg expansion and on ab initio parameters
evaluated by means of the fully relativistic screened Korringa-Kohn-Rostoker method, the width of
domain walls is evaluated for the whole range of concentration in NixFe1�x. It is found that domain-wall
formation occurs only for x < 20% and x > 55%; i.e., in the neighborhood of the structural phase
transition from bcc to fcc, NixFe1�x first tends to form single domains before the actual range of
concentrations of this phase transition is reached. The calculated domain-wall widths are found to be in
reasonably good agreement with available experimental data.
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Since their discovery by Bloch [1] and Néel [2], mag-
netic domains and domain walls have become important
features of ferromagnetism, which over more than five
decades has constantly aroused curiosity; see, for example,
Refs. [3–5]. Although nowadays the interest in magnetic
domains and domain-wall formation has changed from
extended systems such as well characterized thick layers
on suitable substrates or single crystals to restricted sys-
tems in the form of thin wires or spin valve type arrange-
ments, i.e., to systems with structural or geometrical
restrictions, one has to realize that—as can be deduced
from Refs. [6–8]—dynamical effects and the use of cur-
rents to induce domain-wall motions are not such new
phenomena or recently discovered techniques as some-
times believed. Clearly enough, the discovery of the giant
magnetoresistance effect increased substantially the inter-
est in domain walls because of their contribution to the
overall resistance of devices based on this effect. Since
domain-wall widths are typically only between 100 and
500 nm, experimental techniques had to be improved con-
tinuously in order to map out sufficiently well domain
walls, and, by making use of spin-polarized techniques,
in the past few years have seemed to head even for a
resolution necessary to trace the orientation of the magne-
tization within domain walls. Theoretical investigations in
this context were either based on macroscopic models (see
Refs. [9–12]), micromagnetic simulations [13,14], or
Monte Carlo simulations [15] or were devoted to
domain-wall related electric properties (see Refs. [16–
18]).

Suppose a substitutional alloy is viewed as an infinite
stack of atomic planes with the z axis serving as the surface
normal and two-dimensional translational invariance
within the planes [19]. The orientation of the magnetiza-
tion in the individual planes of a system consisting of two
domains and a domain wall in between can then be char-
acterized by a set of unit vectors ni, j ~nij � 1, 8 i. Ci then
denotes a particular magnetic configuration in the mag-
netic domain wall, Ci � f ~nl; . . . ; ~nl; ~n0; ~n1; . . . ; ~nL; ~nr;
. . . ; ~nrg, where ~nl and ~nr refer to the orientations in the

left and right domains, respectively, and L is the width of
the domain wall in monolayers (ML). By making use of the
so-called magnetic force theorem, the energy difference
between this configuration and a given reference configu-
ration C0, e.g., C0 � f ~ni � ~nl;8 ig, can then be expressed
as the difference in grand potentials:

 �E�Ci; L� � E�Ci; L� � E�C0; L�; (1)

 E�Ci; L� �
Z EF

Eb
n�Ci; L; ����� EF�d�; (2)

where n�Ci; L; �� is the density of states (in L unit cells)
corresponding to the configuration Ci, and Eb and EF
denote the valence band bottom and the Fermi energy,
respectively. In principle, in order to obtain at a given
width L the domain-wall formation energy, the minimum
over all configurations Ci has to be evaluated, E�L� �
minfCig��E�Ci; L��. Here, however, this general description
is restricted to E�L� � E�C1; L� � E�C0; L�, C1: ~nl � ~x,
~nr � � ~x, ~ni � D��i� ~x, �i � 180i=L, i � 1; . . . ; L, with
~x being a unit vector in the planes of atoms and D��i� a
rotation by an angle �i around the surface normal [19].

It was discussed in quite some detail in Ref. [20] that a
phenomenological description [21] of the grand potential
E�L� can be applied in a kind of multiscale approach in
order to predict the equilibrium domain-wall width L0 by
making use of ab initio parameters. In this simplified
description, E�L� is defined as

 E�L� � E�C1; L� � E�C0; L� � A0

�
�
L
� �L

�
; (3)

where A0 is the area of the two-dimensional unit cell, and�
and � are proportional to the exchange and magnetic
anisotropy energy, respectively. From the condition
dE�L�=dL � 0 follows immediately that the equilibrium
domain-wall width L0 is given by L0 �

����������
�=�

p
. The coef-

ficients � and � in Eq. (3) can easily be obtained by
evaluating E�L� by means of an ab initio method at two
different values of L, say, L1 and L2, L2 >L1, since
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 � � �L2E�L2� � L1E�L1��=�L
2
2 � L

2
1�;

� � L1E�L1� � �L2
1:

(4)

Furthermore, for L2 � L1 � n the corresponding energy
difference �E�n� � E�L1 � n� � E�L1� is simply given
by �E�n� � ��n=�L2

1 � L1n� � n� ’ n�.
All ab initio calculations were performed using the spin-

polarized relativistic screened Korringa-Kohn-Rostoker
method in the atomic sphere approximation (for details,
see Ref. [22]) and the local density functional parametri-
zation given in Ref. [23]. For each concentration of
NixFe1�x, the effective potentials and exchange fields
were calculated self-consistently at the experimental lattice
spacing a by means of the inhomogeneous coherent po-
tential approximation [22] using 45 k points in an irreduc-
ible part of the surface Brillouin zone with the orientation
of the magnetization pointing uniformly along ~x. Using
these potentials and exchange fields, the grand potentials
E�Ci; L� in Eq. (2) were evaluated by means of a contour

integration along a semicircle using a 16 point Gaussian
quadrature.

In the left part of Fig. 1, the convergence of E�L� with
respect to the number of k points used in the surface
Brillouin zone integrations is shown for domain-wall
widths of L1 � 126 and L2 � 192 ML for bcc Ni15Fe85

and fcc Ni70Fe30. In the right part of this figure, the
corresponding convergence of L0 is displaced using this
choice of L1 and L2 in Eq. (4). It turns out that by increas-
ing the number of k points beyond 3000 in these two cases
the remaining error for the equilibrium domain-wall width
L0 is less than 1%.

In Fig. 2, the domain-wall formation energies E�L�=a2

are displayed versus L (in nanometers) for bcc Ni15Fe85

and fcc Ni85Fe15. In this figure, the corresponding solid
line refers to a fit using L1 � 126 ML and L2 � 192 ML,
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FIG. 1. Convergence of the domain-wall formation energy
E�L�=a2 (left, squares: L � 126 ML, circles: L � 192 ML)
and of the equilibrium domain-wall width L0 in nanometers
(right) with respect to the number of k points used in the surface
Brillouin zone integrations. a refers to the lattice constant.
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FIG. 2. Domain-wall formation energies E�L�=a2 for bcc
Ni15Fe85 and fcc Ni85Fe15 as a function of the domain-wall
width L. Open squares refer to calculated values using 2926 k
points in the surface Brillouin zone. The solid line corresponds
to a Landau-Ginzburg fit using L1 � 126 and L2 � 192 ML.
The position of the equilibrium domain-wall width L0 is indi-
cated as a solid circle. The inset shows E�L�=a2 in the vicinity of
L0.
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while open squares refer to ab initio calculated values.
Since the functional form in Eq. (3) fits very well the
ab initio data, the occurring deviations being minute,
Eq. (3) indeed can be used to predict L0 indicated in this
figure as a solid circle; see also the respective insets, in
which E�L�=a2 is depicted in the vicinity of L0.

In plotting now the value of L0 versus the Ni concentra-
tion (see Fig. 3), a perhaps surprising feature becomes
apparent: Domain walls are formed only in the bcc regime
for x < 20% and in the fcc regime for x > 55%, since in
the remainder of concentrations �=�< 0. Recalling that
the structural phase transition between bcc and fcc occurs
around 35% Ni, the present calculations show that, with
increasing Ni concentration slightly before (bcc) or after
(fcc) the concentration range of this transition is reached,
NixFe1�x alloys tend to form single domains. Whether or
not this peculiar feature is, in fact, already part of the
causes driving the structural phase transition seems to
belong rather to the realm for speculations and qualitative
arguments, which shall not be entered into here.

Finally, in Fig. 4, the constants � and� are displayed for
the fcc regime versus the Ni concentration. In particular,
from this figure one can see that below 60% � and � tend
to negative values.

NixFe1�x alloys show quite a few surprising properties.
Magnetic anisotropy properties, e.g., were studied [24]
over the whole concentration range for bulk and free
surfaces and revealed that in the fcc regime the magnetic
anisotropies were indeed very tiny. It should be noted that,
just as for the present problem, for a theoretical description
of these anisotropy properties a fully relativistic descrip-
tion is necessary.

As already stated, a direct measurement of the width of
domain walls is a rather subtle task, since not only do
geometric restrictions play a crucial role but also the shape
of the sample (films or wires) matters. It is therefore not
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FIG. 3. Equilibrium domain-wall width L0 (solid circles: bcc,
solid squares: fcc) as a function of the Ni concentration. Note
that between about 17.5% and 55% Ni no domain-wall formation
occurs. The open diamond, up triangle, and down triangle refer,
respectively, to Refs. [25,3,8].
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FIG. 4. Evaluated constants � and � for the fcc regime of
NixFe1�x. All calculations are based on the use of 2926 k points
in the surface Brillouin zone; see also Fig. 1.
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surprising at all that only in the case where comparable
shapes were considered are somewhat similar experimental
data to be found in the literature. For Fe(100) single
crystals, a width W of 135� 25 nm is reported [25],
whereby the authors of this reference explicitly note that
their 180	 domain walls were ‘‘by no means of Bloch
type.’’ They also argue that the domain-wall width is the
same in the bulk and at the surface. In using the relation
W � �2=��WL, whereWL is the width of the rotation angle
of the magnetization [3], WL turns out to be 210� 40 nm,
which is in reasonably good agreement with the data
reported earlier by Hartmanm and Mende [6] (228 nm),
Lilley [3] (225 nm), and Suzuki and Suzuki [8] (260 nm).

Depending on the film thickness, by the use of high
resolution Lorentz microscopy a direct observation of a
domain wall yielded a width between 60 and 210 nm for
Ni81Fe19 [26]. Spin currents were reported [27] to create
vortex walls in Ni80Fe20 with a width of 400–600 nm.
However, geometrical restrictions in Ni80Fe20 seemed to
result in widths between 500 and 700 nm [28]. Fur-
thermore, for Ni76Fe24, widths between 200 and 400 nm
depending on the film size were observed [7]. The calcu-
lated values in Fig. 3 of 200–250 nm for Ni concentrations
larger than about 80% seem therefore to be quite reason-
able in comparison to these experimental findings. Very
clear statements of whether Bloch or Néel domain walls
were seen experimentally are missing completely.

Quite clearly, nowadays the emphasis has shifted to
domain-wall depinning by spin currents [29,30] and to
domain-wall motions in the context of tunnel junctionlike
trilayers [31]. However, the question of the width of do-
main walls in one of the most prominent magnetic systems,
namely, NixFe1�x, and of how to describe this width theo-
retically remains valid also in these new areas of interest. If
the problem to be investigated condenses to the question of
how to reduce the domain-wall width in permalloy, then
Fig. 3 gives a straightforward answer.

The author thanks Professor B. L. Gyorffy for innumer-
able discussions over the years. Domain walls were only
one of the topics touched.
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