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We study the deconfined quantum critical point of the Kondo-Heisenberg lattice in three dimensions
using a fermionic representation for the localized spins. The mean-field phase diagram exhibits a zero
temperature quantum critical point separating a spin liquid phase where the hybridization vanishes and a
Kondo phase where it does not. Two solutions can be stabilized in the Kondo phase: namely, a uniform
hybridization when the band masses of the conduction electrons and the spinons have the same sign, and a
modulated one when they have opposite sign. For the uniform case, we show that above a very small
temperature scale, the critical fluctuations associated with the vanishing hybridization have dynamical
exponent z � 3, giving rise to a resistivity that has a T logT behavior. We also find that the specific heat
coefficient diverges logarithmically in temperature, as observed in a number of heavy fermion metals.

DOI: 10.1103/PhysRevLett.98.026402 PACS numbers: 71.27.+a, 72.15.Qm, 75.20.Hr, 75.30.Mb

A large number of experiments have been performed on
metallic heavy fermion compounds close to a zero tem-
perature phase transition [a quantum critical point (QCP)]
driven by an applied magnetic field, chemical doping, or
pressure [1]. In the quantum critical regime, the thermo-
dynamics and transport properties are very unusual, violat-
ing the predictions of the Landau Fermi liquid theory of
metals. The resistivity is quasilinear in temperature over
several decades, and in many cases the specific heat coef-
ficient diverges logarithmically as the temperature is de-
creased. These unusual observations have motivated many
theoretical studies that have attempted to capture these
effects. Most theories [2–5] are based on the assumption
that at the QCP, the Fermi liquid is destabilized by spin
density wave formation, and therefore the critical fluctua-
tions are magnetic in nature. In d � 3, these theories fail to
capture simultaneously the linear temperature dependence
of the resistivity and the divergence of the specific heat
coefficient at low temperatures [6]. More recently the
problem has been approached from another perspective
which takes the point of view that at the QCP, magnetic
fluctuations suppress the formation of the heavy Fermi
liquid, driving the effective Kondo temperature of the
lattice (TK) to zero [6–9]. In this picture, the QCP is a
bicritical point where the metal experiences fluctuations
due to the vanishing energy scale TK as well as the para-
magnons. One feature that distinguishes between these two
classes of theories is that the first predicts the Fermi
volume to change smoothly across the QCP, while the
second predicts an abrupt change [6].

In this Letter we explore the possibility that in the
quantum critical regime, the unusual behavior in thermo-
dynamics and transport is due to critical fluctuations, but of
a nonmagnetic order parameter associated with the vanish-
ing energy scale TK, and not due to paramagnons. The
order parameter we advocate is the field � associated with
the hybridization between the localized spins and the con-
duction electrons [10,11]. At the QCP, the effective Kondo

temperature for the lattice goes to zero, leading to a
‘‘Kondo breakdown’’ of the heavy Fermi liquid. The criti-
cal fluctuations of � are gapless excitations, and we study
how these fluctuations influence the properties of the metal
using the formalism of the large N Kondo-Heisenberg
model.

Beyond the mean-field level, the Kondo-Heisenberg
model can be treated as a lattice gauge theory. Senthil
et al. [8] have examined the effect of the gauge fluctuations
in this model, while Coleman et al. [9] studied the zero
temperature transport anomalies. In our Letter, we find a
number of novel effects associated with the fluctuations of
the � field which were not discovered in these earlier
studies.

At the Kondo breakdown QCP where h�i � 0, we ob-
serve two new phenomena: (1) � can order at a finite wave
vector leading to spatial modulations of the Kondo hybrid-
ization analogous to the Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) state of superconductivity [12]; (2) the presence of
multiple energy scales, spread over a very large range in
energy. The lowest scale is extremely small (of order
1 mK), above which, up to an ultraviolet cutoff of order
the single ion Kondo temperature, the critical fluctuations
of� exhibit a dynamical exponent z � 3. This gives rise to
a marginal Fermi liquid–like behavior for the conduction
electrons in d � 3, with a resistivity that goes as T logT. A
logarithmic dependence is also found for the specific heat
coefficient from both the gauge and � fluctuations.

Our starting point is the large N formulation of the
Kondo-Heisenberg model, where N denotes the enlarged
spin symmetry group SU�N�. It describes a broad band of
conduction electrons interacting with localized spins
through antiferromagnetic Kondo coupling JK > 0. The
localized spins interact with each other via nearest neigh-
bor exchange JH > 0. We work with a representation of
the localized spins in terms of Abrikosov pseudofermions
~Si �

P
��f

y
i;� ~���fi;�, where ��;�� � �1; N�, with the

constraint of nf � N=2 spinons per site i. The interactions
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which are quartic fermionic terms can be decoupled using
Hubbard-Stratonovich fields ’ij !

P
�f
y
i�fj� for the

Heisenberg exchange, and �yi !
P
�f
y
i�ci� for the

Kondo interaction. Following Ref. [8] we assume that in
d � 3, ’ condenses in a uniform spin liquid phase that
gives dispersion to the spinons, which is an essential
ingredient for Kondo breakdown to occur (physically we
interpret the uniform spin liquid as a mean-field descrip-
tion of the short range magnetic correlations that persist
when a magnetic ground state is destroyed by quantum
fluctuations). This gives the Lagrangian
 

L �
X

hiji�

�cyi��@�� tij�cj�� f
y
i��@��’0e

iaij � �i�ij�fj��

�
N
2

X

i

�i�
N
JK

X

i

�yi �i�
N’2

o

JH

�
X

i�

�cyi�fi��i�H:c:� (1)

(V, the volume of the system, is set to 1). The above
Lagrangian has a local U�1� gauge invariance [13]. The
Lagrange multiplier �i (scalar potential) enforces the con-
straint nf � N=2 per site. Given a state which satisfies the
above constraint, a single hop of a spinon will violate it.
Consequently, only simultaneous opposite hops of spinons
between two neighboring sites are physically allowed. This
implies that the local spinon current operator Jfi � 0 at
each site. The gauge fields aij (vector potential) associated
with the phase of ’ij ensure that this condition is satisfied.

There are two important parameters in Eq. (1). First,
� � ’0=D, which is the ratio of the spinon to the conduc-
tion electron bandwidth D [note from Eq. (1) that for � �
0, �0 � JH]. Second, while the spinon band is half-filled
due to the constraint (henceforth we assume N � 2), the
conduction band filling is generic. Without any loss of
generality we take the conduction band to be less than
half-filled. This implies that the Fermi wave vector of the
spinon band kF0 is different from that of the conduction
band kF. We denote the mismatch by q� � kF0 � kF. In the
following we take � and (q�=kF) to be small. We identify
�D with the single ion Kondo scale (T0

K � De�1=�0JK )
which is typically 10 K in heavy fermions. Assuming D	
104 K, we get �	 10�3.

At the mean-field level, the parameters ’0, h�ii and h�ii
are determined by minimizing the free energy F. The
mean-field phase transition between the spin liquid state
h�ii � 0 and the heavy Fermi liquid state with a lattice
Kondo temperature TK 
 	�0h�ii2 occurs when

 

@2F

@j�qj2
�

1

JK
��fc�q; 0� � 0; (2)

where �fc�q; 0� is the static electron-spinon (fc) polariza-
tion. We solve this equation for two different situations, the
result of which is depicted in Fig. 1. (i) e-e case, where
both the bands are taken to be electronlike. Linearizing the

fermionic dispersions we have 
k � vF�k� kF� for the
conduction electrons, and 
0

k � �vF�k� kF � q
�� for the

spinons (where k � jkj). For linearized dispersions,
�fc�q; 0� turns out to be q independent. Inclusion of the
curvature stabilizes a second order phase transition around
q � 0, the polarization taking the form �fc�q; 0� �

�0

1�� �

�ln�� 1��2�2� ln�
4�1���2

q2

k2
F
�, where �0 � 1=D is the conduction

electron density of states at the Fermi energy. In this case
the T � 0 phase transition occurs at a critical Kondo
coupling of JcK � 1=��0 ln�1=�0JH�� [14]. (ii) e-h case,
where the conduction band is taken to be electronlike as
before, while the spinon band is holelike with a linearized
dispersion 
0

k � ��vF�k� kF � q
��. In this case we find

�fc�q; 0� �
�0

1�� �ln
�v2

Fjq
�2�q2j

D2�1���2 � 2� q�

q ln q��q
jq��qj�, which has

a minimum at q � 1:2q� independent of �. In this state TK
is modulated, with nodes in space where TK vanishes. This
solution is similar to the spin density wave instability
encountered in chromium [15] and in the LOFF state of
superconductivity [12,16]. Figure 1(a) shows that for para-
bolic bands the minimum of the effective potential is lower
in the e-h case than in the e-e case. Thus, for parabolic
bands, the modulated solution is more stable [Fig. 1(b)].
However, the question of which solution is realized in real
compounds will be material dependent.

We now turn to the fluctuations around the mean-field
solution. We present our results for the simpler e-e case,
leaving the more complex e-h case for a later paper. In the
quantum critical regime there are two important types of
gapless fluctuations, namely, the gauge fluctuations asso-
ciated with aij and the critical fluctuations of the Kondo
bosons �.

The gauge fluctuations of this theory have been studied
earlier by Senthil et al. [8]. Here we summarize the salient
points to put our work in perspective. It is convenient to
work in the Coulomb gauge ~r � ~a � 0, where the vector
gauge fields a� (� � x, y, z) are purely transverse [13].
The fluctuations of � decouple from those of a�, and
give rise to a screened Coulomb interaction. As such,
they are massive and can be neglected. The gauge fields
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FIG. 1 (color online). (a) q dependence of �fc (� � 0:01 and
q�=kF � 0:1). Note differing scales for the e-e and e-h cases.
(b) Quantum critical point as a function of JK and JH for the e-e
(q � 0) and e-h (q � 1:2q�) cases.
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a�, which act as vectorial Lagrange multipliers to en-
sure that the local spinon current Jfi � 0, do not have
any intrinsic dynamics of their own. Their dynamics is
generated via coupling with the spinon band, and therefore
they are overdamped. For frequencies smaller than the
spinon bandwidth �D, the transverse gauge field propaga-
tor D���x; �� � hT��a��x; ��a��0; 0��i has the standard
form D���q; i�n� � ���� � q�q�=q2���1�q; i�n�, with
��q; i�n� / ��q=2kF0�

2 � j�nj=��vFq��. This is the typi-
cal form for excitations with dynamical exponent z � 3,
which in d � 3 are known [17] to give a contribution to
the specific heat coefficient   �@2F=@T2 / ln��D=T�
and to the static spin susceptibility ��s / T2 ln��D=T�.
Finally, when the compact nature of the U�1� gauge group
on the lattice is taken into account, the gauge fluctuations
convert the finite temperature mean-field transition line
into a crossover line [8,18].

In the quantum critical regime, the fluctuations of the
complex order parameter fields (�yi , �i) are massless as
well (ignoring for the moment the T-dependent mass
generated by the quartic j�j4 coupling). The propagator
for these fluctuations is defined as D��x; �� �
hT���

y�x; ����0; 0��i with D�1
� �q; i�n� � 1=JK �

�fc�q; 0� ���fc�q; i�n� where

 ��fc�q; i�n� �
X

�

�0��X1� ln�X1�� � X2� ln�X2���

2�vFq�1� ��

(3)

with X1� � ��i�n � �vFq� �vFq
�, X2� �

�i�n � �vFq� �vFq
�, and �fc�0; 0� � �0 ln���=�1�

�� (��fc is the dynamical part of the fc polarization).
The different regimes of D��q; i�n� with their associated
dynamical exponents z are summarized in Fig. 2(a). At
high energies, one finds z � 1 behavior consistent with
quasilocal behavior. But we find physical properties are
dominated by the z � 3 and z � 2 regimes. These two
regimes can be understood as follows. Because of the
mismatch between the two Fermi surfaces, a minimum
momentum is necessary to excite interband (fc) particle-
hole pairs. As a result for �<�vF�q

� � q�, excitations of
� do not decay into particle-hole pairs but propagate
ballistically with D�1

� �q; i�n� 
 �0�q2=�4k2
F� �

i�n=EX�, i.e., z � 2 (where EX � �vFq�). This behavior
is cut off for frequencies �>E� with

 E� � c�D�q�=kF�3 and c	 10�1; (4)

above which the dynamical exponent z changes from 2 to 3.
For most of the phase space, the spectrum for the fluctua-
tions of � lie within the interband particle-hole continuum,
making their dynamics overdamped with D�1

� �q; i�n� 

�0�q2=�4k2

F� � 	j�nj=�2�vFq��, i.e., z � 3. The energy
scale in the z � 3 regime is �q=EX 
 q3=�2	k2

Fq
�� which

has an infrared cutoff at E� because of the mismatch vector
q�. The ultraviolet cutoff scale for the z � 3 regime is
�vF�q� q�� which is of order �D for q	 kF. The ener-

gies E� (infrared) and �D (ultraviolet) appear as crossover
scales for any physical property that is affected by the
excitations of �. For a one impurity Kondo scale �D	
10 K, and q�=kF 	 10�1 [19], we estimate E� 	 1 mK. E�

is therefore a very small energy scale which is essentially
unobservable.

The crossover lines in T that define the quantum critical
region are symmetric around the QCP � � �c, where � �
1=��0JK� [Fig. 2(b)]. These are determined by the
T-dependent mass generated by the quartic j�j4 coupling.
For T < E�, we find that the leading contribution is from
the z � 2 regime (proportional to T3=2 for d � 3), so that
the crossover temperature T / j�� �cj2=3, while for T >
E� the z � 3 regime dominates giving a crossover tem-
perature T / j�� �cj3=4 for d � 3.

Next we examine the contribution to the free energy
from the fluctuations of �. We find that the leading con-
tribution is entirely due to the z � 3 regime since it
comes from a much larger phase space volume (the z �
2 contribution is similar to that of a gapless magnon mode).
For E� < T <�D, we find F�T� 	

R
nBIm ln�D�1

� � 	
�k3

FT
2=�9�D� ln��D=T�, which is a typical result for z �

3 excitations. This implies a contribution to the specific
heat coefficient 	 2k3

F=�9�D� ln��D=T�, which adds to
a similar contribution from the transverse gauge fluctua-
tions. For T < E�, the infrared cutoff sets in, and the
specific heat coefficient from the � fluctuations saturates.
This regime is then dominated by the logarithmic contri-
bution from the transverse gauge fields [17].

We now calculate the self-energy of the conduction
electrons due to the hybridization fluctuations (c�f�
�). This is defined as �c�k;i!n��T

P
!n;qGf�k�q;i!n�

i�n�D��q;i�n�, where G�1
f �k; i!n� � �i!n � 


0
k� is the
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FIG. 2 (color online). (a) Structure of D� for the e-e case
(�� 1) at the QCP for positive frequencies. z is the dynamical
exponent in the various regions, which are delineated by the
dashed lines, equal to �vF�q� � q� and vF�q� � q�. !coll is the
zero of D�1

� in the z � 2 regime (a propagating mode), and �q is
the dispersion of the damped mode in the z � 3 regime (maxi-
mum of the imaginary part of D�). Note the presence of energy
scales E� 	 10�4�D and EX � �vFq

� 	 10�1�D. (b) Phase
diagram for the e-e case (�� 1). Note the crossover from z �
2 to z � 3 behavior at E� (dotted line). The inset shows the phase
diagram on a linear scale. The solid line is the crossover line in
the Kondo phase, the dashed line the crossover line in the spin
liquid phase.
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inverse propagator of the spinons. As in the case of the free
energy, we find that the leading contribution is due to the
z � 3 regime of D��q; i�n�. At T � 0 and for E� <!<
�D, we find Im�c�kF;!� 	 k2

F=�6	�vF�0�!. The tem-
perature dependence of Im�c�kF;! � 0; T� involves a
frequency integral weighted by the factor nB � nF �
1= sinh��=T�. This makes the integral logarithmically di-
vergent in the infrared, which is cut off by E�. For E� <
T <�D we find

 Im �c�kF;! � 0; T� 	 k2
F=�6	�vF�0�T ln�2T=E��: (5)

For !, T < E�, the self-energy is Fermi liquid–like.
We turn to the T dependence of the static spin suscep-

tibility �s�T�. At the mean-field level, we find what is usual
for band fermions, namely, a constant part plus a T2 term.
To calculate the correction beyond mean field (��s) due to
the Kondo bosons, we note that in a magnetic field B, there
is an additional �B=��D��2 contribution to D�1

� �q; i�n�.
This gives ��s�T� / T

4=3 for E� < T < �D, and a T2

dependence below E� [so below E� the T2 ln�T� contribu-
tion due to the gauge bosons dominates].

Finally we discuss the temperature dependence of the
resistivity, �, that is obtained in the quantum critical re-
gime. Equation (5) gives the T dependence of the inverse
lifetime ��1

c / Im�c�T� of the conduction electrons. For
one band models experiencing q ’ 0 scattering, this life-
time cannot be associated with the transport lifetime, �tr,
because the leading contribution to the self-energy comes
from forward scattering processes which are not effective
in relaxing the current. Consequently, when vertex correc-
tions are taken into account, ��1

tr acquires an additional
temperature dependence proportional to q2 	 T2=z.
However, our model consists of two bands, one of light
particles (the conduction electrons) which scatter from
very heavy particles (the spinons) [20]. As such, the charge
neutral spinons act as an effective bath for the relaxation of
the conduction electron current (the other charge carrying
modes, the complex � bosons, have overdamped dynam-
ics, and therefore the current is mostly carried by the
conduction electrons). The first nonzero vertex correction
involves two � boson exchange processes. Such a correc-
tion is small by a factor of�. Therefore �tr can be identified
with �c, and for E� < T < �D we find

 ���T�  ��T� � ��0� / T ln�2T=E��: (6)

For T < E�, ���T� / T2, but E� is extremely small
(	1 mK). Thus, the Kondo-Heisenberg model captures
one of the most mysterious features of quantum criticality
in heavy fermion compounds, namely, the quasilinear re-
sistivity observed for most compounds over a large tem-
perature range.

In conclusion, we studied the Kondo breakdown QCP of
the Kondo-Heisenberg model in d � 3. Over a large tem-
perature range, we find that the critical fluctuations have a
dynamical exponent z � 3, giving rise to marginal Fermi
liquid behavior for the conduction electrons. The specific

heat coefficient has a log�1=T� dependence, while the
resistivity has a T logT behavior. The Kondo-Heisenberg
model is characterized by multiple energy scales, and as
such shows great promise in explaining the various subtle-
ties associated with heavy fermion quantum critical
behavior.
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