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We report variational and diffusion quantum Monte Carlo (VMC and DMC) calculations of the
equation of state and Raman frequency of diamond. The pressure derivative of the bulk modulus, which
has not been accurately determined experimentally, is calculated to be 3.8 (VMC) and 3.7 (DMC). The
values of the Raman frequency calculated at the experimental volume are 1373 cm�1 (VMC) and
1359 cm�1 (DMC), in good agreement with the experimental value of 1333 cm�1.

DOI: 10.1103/PhysRevLett.98.025701 PACS numbers: 64.30.+t, 02.70.Ss, 31.25.�v, 71.10.�w

Diamond anvil cells are used to study condensed matter
over a wide range of pressures and temperatures. The range
of static pressures attainable today extends at least as far
as the conditions prevailing in the center of the Earth
(� 360 GPa). A thorough understanding of the physical
properties of diamond at high pressure is of great impor-
tance in the design and operation of such cells, but
although there have been many experimental studies of
this material some properties, including the equation of
state, remain imperfectly characterized.

The equation of state (EOS) of a substance is the equi-
librium relationship between its pressure, volume, and
temperature. At fixed temperature, the EOS can be de-
scribed over a wide range of pressures in terms of the
zero-pressure values of the volume V0, the isothermal
bulk modulus B0, and its pressure derivative B00. The values
of V0 and B0 for diamond are well established over a wide
range of temperatures, but there is considerable uncertainty
about B00. A recent study [1] gave B00 � 3:0� 0:1 at room
temperature, although it has been argued that the pressure
calibration should be revised [2]. The most commonly
cited experimental value [3] is B00 � 4:0� 0:5, but the
large error bar leads to considerable uncertainty in the
EOS at high pressures.

Diamond is highly transparent to electromagnetic radia-
tion over a large range of wavelengths, and the sample
within a diamond anvil cell may be examined in situ under
elevated pressure by x-ray diffraction techniques and by
Raman, Brillouin, and infrared spectroscopies. The Raman
technique, in particular, has been used extensively to study
the zone-center optical phonon mode of diamond under
pressure. It has been suggested [1,4] that the volume
dependence of the Raman frequency could be used as a
pressure gauge in diamond anvil cell experiments, and
more information about the Raman frequency under high
compression would help in the calibration process.

The EOS and Raman frequency of diamond have been
extensively studied using density functional theory (DFT)
[5]. These calculations, performed using the standard
local density approximation (LDA) and Perdew-Burke-
Ernzerhof [6] generalized gradient approximation (PBE-
GGA) exchange-correlation functionals, gave values of B00
intermediate between the two experimental values men-
tioned above. Fahy et al. [7] have studied the EOS with the
variational quantum Monte Carlo (VMC) method [8], but
the statistical accuracy was insufficient to obtain a value
of B00.

In view of the unsatisfactory knowledge of the EOS of
diamond and the importance of the material, we believe
that a study using highly accurate continuum quantum
Monte Carlo (QMC) techniques [8] would be useful. We
have therefore calculated the EOS up to a pressure of about
500 GPa and the Raman frequency of diamond up to about
320 GPa using both the VMC and diffusion quantum
Monte Carlo (DMC) techniques [8].

VMC and DMC techniques are stochastic methods for
evaluating expectation values of many-body wave
functions which have the desirable properties of extremely
high accuracy and a favorable (cubic or better) scaling
with system size. In VMC, expectation values are eval-
uated using an approximate trial wave function and
Monte Carlo integration. In the more accurate DMC
method, the imaginary-time Schrödinger equation is used
to evolve an ensemble of electronic configurations towards
the ground state. The fermionic symmetry is maintained by
the fixed-node approximation where the nodal surface of
the wave function is constrained to equal that of a trial
wave function.

The QMC calculations were performed with the CASINO

[9] code using Slater-Jastrow trial wave functions, �T �
D"D# exp�J�, where D" and D# are Slater determinants of
up- and down-spin orbitals and exp�J� is a Jastrow corre-
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lation factor. The orbitals were obtained from the CASTEP

[10] code, using the PBE-GGA functional, Dirac-Fock-
based pseudopotentials representing the C4� ionic cores
[11], and a plane wave cutoff energy of 100 a.u. The
orbitals were reexpanded in a B-spline or ‘‘blip’’ basis
for greater efficiency in the QMC calculations [12]. We
used Jastrow factors of the form described in Ref. [13]
containing both long-ranged electron-electron terms and
short-ranged electron-nucleus terms. The free parameters
in the Jastrow factors were optimized using a variance
minimization technique [14]. A target population of 640
configurations and a time step of 0.01 a.u. were used in the
DMC calculations, corresponding to acceptance ratios of
99.6%. We expect the size of the time-step error to be
similar at all volumes.

For the EOS calculations we used simulation cells sub-
ject to periodic boundary conditions containing 128 and
250 atoms, made up of 4� 4� 4 and 5� 5� 5 arrays of
two-atom primitive unit cells. The orbitals were calculated
at the L wave vector of the simulation-cell Brillouin zone,
which corresponds to an efficient special k-points integra-
tion scheme [15]. It is important to check that errors arising
from the use of finite-sized simulation cells are small, and
to correct for the remaining errors. The finite size errors
can be divided into kinetic energy errors arising from using
a single k-point in the Brillouin zone, and long range
exchange-correlation effects. The errors in the DFT kinetic
energies were very small and no correction for the single
k-point was required. The long range exchange-correlation
errors were accounted for by extrapolating the 128 and
250-atom energies to infinite simulation-cell size using the
formula E1	V
 � EN	V
 � b	V
=N, where V is the vol-
ume per atom, N is the number of atoms in the simulation
cell, EN is a calculated energy, and E1 and b are
parameters.

We fitted the calculated energies to the Vinet EOS [16],
which has been demonstrated to work well over large
pressure ranges [17]. The parameters in the Vinet EOS
are V0, B0, B00, and an energy constant C.

We carefully selected the volumes at which the QMC
calculations were performed. If the range is too small, the
statistical errors in the QMC energies lead to large statis-
tical errors in the EOS parameters. If the range is too large,
the estimates of the EOS parameters are biased. After some
experimentation we chose to perform the QMC calcula-
tions at seven volumes with a target error bar in the
energies of 0.0001 a.u. per atom. We then used the PBE-
GGA energies with an additional noise of root-mean-
square amplitude 0.0001 a.u. per atom to model the
QMC data. We took seven volumes within a range around
the experimental equilibrium volume, Vexp

0 � 38:284 a:u:
per atom, and fitted the model data to the Vinet EOS,
averaging over the noise to obtain statistical error bars.
Figure 1 shows both the bias and statistical error bars
associated with a particular choice of volume range. This
led us to use a volume range of 28.5 a.u. per atom, which

results in acceptably small statistical error bars and biases
in the EOS parameters.

The calculated VMC and DMC energies are shown in
Fig. 2, together with the values extrapolated to infinite
system size. The finite size corrections are very small.
Note that the VMC curves are smooth, indicating that the
quality of the trial wave function varies smoothly with
volume, even though separate stochastic optimizations
were performed at each volume. Having obtained the
EOS parameters, we calculated QMC energies at three
smaller volumes. Figure 2 shows that the Vinet fits ob-
tained from the seven higher-volume points describe the
behavior at the more compressed volumes very well.

To compare with measured p-V relations we have added
corrections for the zero-point motion and finite tempera-

 

FIG. 1. Values of the EOS parameters with statistical error bars
corresponding to a noise added to the PBE-GGA energies of
root-mean-square amplitude 0.0001 a.u. per atom. The values
obtained from a very small volume range without noise are
shown as black squares at zero volume range.
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FIG. 2 (color). QMC energies per atom as a function of
volume. The lines are Vinet fits to the data points. The statistical
error bars are not visible on this scale.
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ture vibrational effects at 300 K, calculated at the DFT
level within the quasiharmonic approximation. These cor-
rections are very similar for the LDA and PBE-GGA func-
tionals and amount to changes of only about�0:37 a:u: per
atom in V0,�11 GPa in B0, and�0:03 in B00. The resulting
p-V relations are plotted in Fig. 3, and the EOS parameters
are given in Table I. (The VMC data are not plotted as they
are indistinguishable from the DMC curve on this scale.)

The experimental EOS data of Refs. [1,3] differ mark-
edly at low volumes. The VMC, DMC, and PBE-GGA
EOS curves fall within the region of uncertainty of the
measured EOS of Ref. [3], but the pressure from the LDA
EOS is significantly lower, and falls between the regions of
uncertainty of the experimental curves. The DMC values of
V0 and B0 are the closest to experiment. The value of B00
from the different theoretical methods fall between 3.65
and 3.8(1), with the lowest value coming from the LDA and
the highest from VMC. The LDA EOS seems the least
satisfactory and, rejecting this result, the theoretical values
of B00 range only from 3.72 to 3.8(1). Given the level of
agreement between the various theoretical methods it
seems that the experimental value [1] of B00 � 3:0� 0:1
cannot be sustained. Our QMC results are thus consistent
with the ideas of Holzapfel [2] regarding the refinement of
the ruby luminescence pressure scale used in analyzing
diamond anvil data.

We computed the frequency of the first-order Raman
mode of diamond at four volumes corresponding to a
pressure range of approximately 0–320 GPa using the
‘‘frozen phonon’’ method. In the Raman mode, two
nearest-neighbor atoms are displaced in opposite direc-
tions along their mutual bond by a distance u from their
equilibrium positions, with the pattern of displacements
being repeated in each primitive unit cell.

The observed frequency is renormalized from that cor-
responding to the harmonic potential by anharmonic ef-
fects. This renormalization has been deduced from
experiment to be about �20 cm�1 at zero pressure [19],
in good agreement with the theoretical estimate of
�17:4 cm�1 obtained in Ref. [20]. We performed a thor-
ough study of the Raman mode within DFT, including the
effects of anharmonicity, calculating the renormalization
of the Raman frequency as a function of volume using
Eq. (16) of Vanderbilt et al. [20]. The renormalization is
dominated by the cubic anharmonicity, although the con-
tribution from the quartic terms is not negligible. The
renormalization of the Raman frequency varies weakly
with volume, at Vexp

0 we obtained �18:0 cm�1 (LDA)
and �15:6 cm�1 (PBE-GGA), while at the smallest vol-
ume studied of V � 26:5 a:u: per atom we obtained
�19:4 cm�1 (LDA) and �19:5 cm�1 (PBE-GGA).

The QMC calculations were performed using the larger
5� 5� 5 simulation cells. The statistical errors in the
frequencies are reduced by taking u to be large, in a similar
way to the EOS calculations, but the results are then
affected by anharmonicity. We calculated QMC energies
for the undistorted crystal and for Raman mode displace-
ments of magnitude u1 and u2, which allows us to extract
the cubic anharmonicity in the potential. Suitable values of
u1 and u2 were selected assuming the PBE-GGA energy to
be a reasonable model for the QMC energy, and choosing
values which resulted in errors of only a few cm�1 in the
harmonic frequencies due to ‘‘contamination’’ with quartic
and higher order terms in the potential. The results are not
very sensitive to the values of u1 and u2, and we selected
values in the range 0.17–0.35 a.u.

We added finite size corrections to the QMC frequen-
cies, obtained from PBE-GGA calculations, of
�11:9 cm�1 at Vexp

0 , and �7:4 cm�1 at V � 26:5 a:u:
per atom, resulting in the harmonic frequencies shown in
Table II. The cubic anharmonic terms calculated within
VMC and DMC are very similar and are about 20% larger
than the DFT ones at Vexp

0 and 10% larger at V � 26:5 a:u:
per atom. To obtain the frequencies including anharmonic
effects given in Table II and Fig. 4, we added a correction
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FIG. 3 (color). p-V relation for diamond. The width of the blue
region indicates the uncertainty in the measured EOS according
to the authors of Ref. [1], and the yellow region that in the
measured EOS of Ref. [3].

TABLE I. Vinet EOS parameters. ZPE and temperature effects
at 300 K have been included in the theoretical data.

LDA PBE VMC DMC
Experiment

(300 K)

V0 (a.u.) 37.31 38.61 37.82(6) 38.54(6) 38.284 [18]
B0 (GPa) 454 422 472(4) 437(3) 442(4) [3]
B00 3.65 3.72 3.8(1) 3.7(1) 4.0(5) [3], 3.0(1) [1]

TABLE II. The harmonic and renormalized Raman frequen-
cies at the experimental equilibrium volume in cm�1.

LDA PBE VMC DMC Experiment

! (harmonic) 1281 1292 1389(3) 1375(4) � � �

! (renorm.) 1263 1277 1373(4) 1359(4) 1333 [1]
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calculated using Eq. (16) of Vanderbilt et al. [20]. As the
small quartic terms were not evaluated within QMC we
used PBE-GGA values instead.

The Raman frequency has been measured at atmos-
pheric pressure and room temperature by many research-
ers, with a high level of consistency, and the value of
1333 cm�1 is accurate to better than 1 cm�1. The calcu-
lated and experimental data at Vexp

0 are compared in
Table II. The LDA and PBE-GGA Raman frequencies
are significantly lower than the experimental value, while
the VMC and DMC values are higher. The DMC result is
closest to the experimental one.

We have chosen to plot the Raman frequencies against
volume rather than pressure, because this allows a com-
parison of frequencies calculated with identical structures;
see Fig. 4. Although the value of the Raman frequency is
well established at Vexp

0 , its behavior under high compres-
sions is less certain. Experimental frequencies are often
quoted in terms of the expression !	V
 � !	Vexp

0 
�
	V=Vexp

0 

��, where � is the Gruneisen parameter. The

range of reported experimental behavior is illustrated by
the yellow shaded region in Fig. 4, which corresponds to
� � 0:9–1:06 [5].

Figure 4 shows that the LDA and PBE-GGA frequencies
are very close to each other and are lower than the experi-
mental range at all volumes, while the VMC and DMC
data are also very close to each other and are a little higher
than experiment at large volumes and within the experi-
mental range at lower volumes. The renormalized DMC
phonon frequencies are 1375(4), 1592(4), 1715(3), and
1916	3
 cm�1 at volumes of 38.284, 32.615, 29.791, and
26.500 a.u. per atom, respectively. The calculated data
were fitted to obtain Gruneisen parameters of 0.994
(LDA), 0.978 (PBE-GGA), 0.92(1) (VMC), and 0.94(1)
(DMC).

In summary, we have studied the equation of state and
Raman frequency of diamond using quantum Monte Carlo

methods. The VMC and DMC equations of state are in
good agreement with the experimental data of Ref. [3], and
with PBE-GGA results, but disagree with those of Ref. [1].
The DFT and QMC results support a value of the pressure
derivative of the bulk modulus, B00, of a little below 4. We
have also shown that accurate Raman frequencies can be
obtained in diamond by combining QMC with frozen
phonon techniques.
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[12] D. Alfè and M. J. Gillan, Phys. Rev. B 70, 161101(R)
(2004).

[13] N. D. Drummond, M. D. Towler, and R. J. Needs, Phys.
Rev. B 70, 235119 (2004).

[14] N. D. Drummond and R. J. Needs, Phys. Rev. B 72,
085124 (2005).

[15] G. Rajagopal et al., Phys. Rev. Lett. 73, 1959 (1994); G.
Rajagopal et al., Phys. Rev. B 51, 10 591 (1995).

[16] P. Vinet et al., J. Phys. Condens. Matter 1, 1941 (1989).
[17] R. E. Cohen, O. Gülseren, and R. J. Hemley, Am. Mineral.

85, 338 (2000).
[18] J. Donohue, in The Structure of Elements (Wiley, New

York, 1974).
[19] H. Herchen and M. A. Capelli, Phys. Rev. B 43, 11 740

(1991).
[20] D. Vanderbilt, S. G. Louie, and M. L. Cohen, Phys. Rev.

Lett. 53, 1477 (1984).

 

25 30 35 40
Volume (a.u. per atom)

1200

1400

1600

1800

2000
ω

  (
cm

-1
)

Expt.
LDA (γ = 0.994)
PBE (γ = 0.978)
VMC (γ = 0.92(1))
DMC (γ  = 0.94(1))

FIG. 4 (color). The Raman frequency as a function of volume.
The shaded yellow region shows the range of values obtained by
using Gruneisen parameters in the range � � 0:9–1:06.
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