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We offer a new example of conformal invariance (local scale invariance) far from equilibrium—the
inverse cascade of surface quasigeostrophic (SQG) turbulence. We show that temperature isolines are
statistically equivalent to curves that can be mapped into a one-dimensional Brownian walk (called
Schramm-Loewner evolution or SLE�). The diffusivity is close to � � 4, that is, isotemperature curves
belong to the same universality class as domain walls in the O(2) spin model. Several statistics of
temperature clusters and isolines are shown to agree with the theoretical expectations for such a spin
system at criticality. We also show that the direct cascade in two-dimensional Navier-Stokes turbulence is
not conformal invariant. The emerging picture is that conformal invariance may be expected for inverse
turbulent cascades of strongly interacting systems.
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To identify underlying symmetries is a central problem
of the statistical physics of infinite-dimensional strongly
fluctuating systems. Turbulence is a state of such a system
which is deviated far from equilibrium and is accompanied
by dissipation. Excitation and dissipation usually break
symmetries such as scale invariance, isotropy, and time
reversibility. In fully developed turbulence, the scales of
excitation and dissipation differ strongly and are separated
by the so-called inertial interval. The main fundamental
problem of turbulence is how universal is the statistics of
fluctuations in the inertial interval [1]. Are symmetries,
broken by excitation and dissipation, eventually restored in
that range [2]? Cascades can be direct or inverse depending
on whether the integral of motion is transferred towards
small or large scales, respectively. Symmetries broken by
excitation (scale invariance and isotropy) are generally not
restored in direct cascades due to the existence of statisti-
cally conserved quantities [1,3]. On the contrary, symme-
tries are expected to be restored in the inverse cascade
where one looks at scales much larger than the pumping
scale. This is consistent with the observation that inverse
cascades are scale invariant [4–6]. Moreover, it has been
shown recently that the statistics of zero-vorticity lines in
the inverse cascade of two-dimensional (2D) Navier-
Stokes turbulence display conformal invariance (i.e., local
scale invariance), revealing an unexpected connection with
percolation [7]. Such tantalizing results, while awaiting a
theory capable of explaining them from first principles,
pose new questions: Are there other turbulent flows that
share this property and do they belong to the same univer-
sality class of percolation? In this Letter we answer them
by a numerical investigation of SQG turbulence. This
system is relevant for geophysical applications [8] and
qualitatively similar to Navier-Stokes 2D turbulence. We
show that zero-temperature isolines are SLE4 curves at
large scales (in the inverse cascade). Therefore, the isolines

belong to the same universality class as the trace of a
harmonic explorer, certain isolines of a Gaussian (free)
field [9], interfaces in the O(2) model and frontiers of
Fortuin-Kasteleyn clusters in the four-state Potts model at
the critical point (for an introduction to SLE and statistical
models see Refs. [10,11] and references therein). This
connection allows us to obtain analytical predictions for
some characteristic exponents of cluster and loop statistics
that compare well with numerical results.

The SQG model describes a rotating stably stratified
fluid with a uniform potential vorticity [8]. The tempera-
ture is advected along a surface bounding a constant po-
tential vorticity interior,

 @tT � v � rT � ßr2T � f; (1)

and determines the velocity v � ẑ� r ,  �x; t� �R
dyjx� yj�1T�y; t�. Without dissipation and forcing

(ß � f � 0) the equations admit two positive-defined qua-
dratic invariants Z �

R
T2dx and E �

R
 Tdx. In the

presence of a forcing that injects temperature fluctuations
at a scale lf, a double cascade develops, akin to the one
observed in 2D Navier-Stokes turbulence: the ‘‘energy’’ E
flows upscale whereas the ‘‘enstrophy’’ Z goes downscale.
Here we focus on the inverse cascade. Requiring the energy
flux to be scale independent, one gets the scaling law
�rT � T�x� r� � T�x� � rH with H � 0 (i.e., logarith-
mic correlation functions). Indeed, numerical simulations
show that the temperature field in the inverse cascade
displays a self-similar statistics with a scaling compatible
with dimensional expectations (see [8,12–15] and Fig. 1).

We now consider the connected regions of like-sign
temperature (clusters) and their boundaries (loops)—see
Fig. 2. To guess the cluster statistics one needs the knowl-
edge of the scaling properties of the temperature field.
Indeed, for a self-similar field with Hurst exponent H �
0 the fractal dimension of loops is 3=2 [16]. If one assumes
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that such a loop ensemble has a conformal invariant scaling
limit, it should belong to the same universality class as
loops in the O(2) model in the dense phase. By exploiting
the Coulomb gas representation of the latter system (with
g � 1, [17]) and general scaling arguments [16], it is
possible to derive analytically a set of scaling exponents
associated to cluster and loop statistics. These include the
fractal dimensions of clusters and loops, the power-law
exponents for the number of clusters of given mass, and the

number of loops of given length, radius of gyration, or area.
In Fig. 3 such statistics are displayed for surface quasigeo-
strophic turbulence and shown to be consistent with that of
the O(2) model.

These results give a strong indication that zero-
temperature isolines might be conformally invariant, i.e.,
statistically equivalent to SLE� curves with the diffusivity
� � 4, as it is conjectured for the O(2) model. To verify
directly this hypothesis, we proceeded as follows. First, we
identify putative SLE traces. After having isolated a zero-
field line, we cut it by an arbitrarily placed straight line (to
play a role of real axis) and choose a piece of contour
between two points of intersection at a distance larger than
l�. A sample trace is shown in Fig. 4(a). This selection
procedure, self-consistent for � 	 4, yields a set of curves
in the half-plane, which are expected in the scaling limit to
converge to so-called chordal SLE (i.e., joining two points
on the real axis). Second, we extract the Loewner driv-
ing function from the trace. To this aim, let us consider

 

FIG. 2 (color online). Temperature clusters in the inverse
cascade of SQG turbulence. These are connected domains with
positive temperature. Negative temperature regions are black.
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FIG. 3 (color online). Cluster and loop statistics for SQG
turbulence. (a) The average area M versus the radius of gyration
R. (b) The length of a loop (blue symbols) and its externally
accessible perimeter which is obtained by subtraction of fjords
with necks smaller than lf (green symbols) versus R. (c) Number
of clusters of area between M and �M. (d) Number of loops of
length between L and �L. (e) Number of loops of radius between
R and �R. (f) Number of loops of area between A and �A. In all
figures � ’ 1:1. The solid lines are the theoretical expectations
for the O(2) model.
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FIG. 1 (color online). The second-order structure function of
temperature differences and, in the inset, probability density
functions for r � 0:02, 0.04, 0.06 compared to a Gaussian
density (solid line). Data have been obtained by direct numerical
simulations of (1) by a pseudospectral code in a fully periodic,
square domain of size 1 with 40962 lattice points. Gaussian
white-noise-in-time forcing f has correlation length lf 
 1=200.
The system is kept in a statistically stationary state by supple-
menting (1) with a linear damping term �T=� that models
bottom friction and extracts energy at very large scales l� / �,
(l� � 1=20–1=10 depending on �).
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chordal SLE in the upper-half plane H from 0 to x1. We
parametrize the curve by the dimensionless t, not to be
confused with time in (1). The equation for gt�z�, which
maps the half-plane minus the trace up to t into H itself, is
@tgt � 2=f’0�gt��’�gt� � �t�g, where ’�z� � x1z=�x1 �
z�. The equation for gt can be solved for a constant �:
Gt;��z� � x1f�x1�x1�z� � �x

4
1�z���

2�4t�x1�z�
2 �

�x1���2�1=2g=fx2
1�x1�z���x4

1�z���2�4t�x1�z�2�
�x1���2�1=2g, where � � ’�1���. In this case the trace is
the semicircle joining � and x1. For a generic ��t� we
partition the interval [0, T] into subintervals �tn; tn�1� with
t0 � 0, tN�1 � T, where we approximate the driving func-
tion by the constant �n � ��tn� and express gt as a com-
position GtN�tN�1;�N�1


 � � � 
Gt1;�0
. It is now possible to

extract the driving function from a candidate SLE trace,
approximated by a sequence of points fz0; z1; . . . ; zN�1g,
where z0 � 0 and zN�1 � x1. The first step is to iden-
tify the unique semicircle passing through the points x1
and z1 [see Fig. 4(b) for an illustration]. This yields
the values for �0 � ’�1��0� � �Rez1x1 � �Rez1�

2 �
�Imz1�

2�=�x1 � Rez1� and t1 � �Imz1�
2x4
1=f4��Rez1 �

x1�2 � �Imz1�
2�2g. The map Gt1;�0

is then applied to the
points resulting in a new sequence, by one element shorter:
z0k � Gt1;�0

�zk�1� with k � 1 . . .N. The operation is iter-
ated on the new subsequence of points until one obtains the
full set of tk and �k that gives a piecewise constant ap-
proximation of the driving function.

The result of this procedure is an ensemble of ��t�whose
statistics converge, for l2f & �t & l2� to a Gaussian process
with the variance h�2�t�i � �t and � � 4� 0:2, as shown

in Fig. 5. We conclude that, within statistical errors, zero-
temperature isolines in the inverse cascade of SQG turbu-
lence are locally SLE4 curves. This applies also to other T
contours provided that T � Trms. Moreover, in the limit of
very large system size where T�r� tends to a self-affine field
and Trms diverges, we expect all isolevel loops to be
statistically equivalent (another application of SLE to non-
equilibrium systems has been found recently for spin
glasses [18]).

Remark that surface quasigeostrophic and Navier-
Stokes systems belong to a class that is uniquely specified
by the transport Eq. (1) and by a linear, scale-invariant,
local in time relation between the advected field and the
stream function  �x; t� �

R
dyjx� yj��2T�y; t� [12] (for

compressible analogs, see [19]). SQG dynamics corre-
sponds to � � 1, Navier-Stokes equation to �! 2, T
being vorticity. The large-scale limit of the Charney-
Hasegawa-Mima equation corresponds to � � �2 [20].
Dimensional arguments for the inverse cascade in this class
of models give �rT / rH with H � �2� 2��=3. This ex-
ponent can be used to infer the dimension of the contour
loops �3�H�=2 � �7� 2��=6 [16] (for 0<H < 1 and
0<�< 1) and thus conjecture that they converge to SLE�
curves with � � 4�1� 2��=3.

Let us stress that the temperature field in our model has
non-Gaussian statistics; see [15] and Fig. 1. A similar non-
Gaussian form with logarithmic moments holds for the
height function built on independently oriented loops
from the O�n� model [21,22]—yet it requires n � 2 and
� � 4 (for � � 4 the statistics is Gaussian). Should our
field belong to this class, the difference �� 4 would be
much larger than our 5% margin of error (as can be inferred
comparing Fig. 5 with the results of [22]). It remains to be
understood how such a non-Gaussian field can have iso-
lines with the same statistics as the isolines of the Gaussian
free field.
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FIG. 4. (a) A putative SLE trace. (b) A cartoon of the algo-
rithm used to extract the driving function from the trace (see
text). The procedure has been checked on an ensemble of self-
avoiding loops where it yielded the correct value � � 8=3 with
an uncertainty of less than 5%.
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FIG. 5 (color online). Statistics of the driving function. In the
main frame is shown the diffusive behavior of ��t�. Lower-right
inset: the diffusion coefficient is � � 4� 0:2. Upper-left inset:
the probability density of �t, rescaled by its variance is Gaussian
(different symbols correspond to t � 0:02, 0.04, 0.08).
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Let us briefly compare our findings with other turbulent
systems. In the direct cascade of 2D Navier-Stokes turbu-
lence, the vorticity field has logarithmic correlations (H �
0) and is characterized by very weak, if any, deviations
from self-similarity; vorticity isolines have dimensionD �
3=2, just as in the inverse cascade of SQG turbulence.
However, the similarities end here. The loops in the direct
cascade, shown in Fig. 6, are not SLE curves since they are
not even scale invariant as seen from the multifractal
spectrum in the inset in Fig. 6(b). Therefore, it appears
that inverse cascades are more akin to statistical mechanics
systems and more appropriate for conformal invariance.
Another necessary condition may be strong nonlinearity
since the turbulence of weakly interacting waves is gen-
erally not conformal invariant (except when it has loga-
rithmic correlations in two dimensions). Another relevant
example is a passive scalar in a spatially smooth random
flow (Batchelor regime), which also has logarithmic corre-
lation functions [23]. In this case, cascade direction de-
pends on the compressibility of the flow [3]. By a
straightforward application of the formulas from [24,25]
one can show that the four-point correlations in the
Kraichnan model are not conformal invariant in either
direct or inverse cascade.

To conclude, we have found the second example of
conformal invariance in turbulence thus showing that
Navier-Stokes turbulence and percolation are not unique
in this respect. Both cases correspond to inverse cascades.

In the direct (inverse) cascade we study statistics at the
scales which are smaller (larger) than the pumping corre-
lation scale. It is thus not surprising that the direct cascade
is sensitive to the statistics of the pumping [1,3]; even when
there is scale invariance, conformal invariance is absent as
shown here. In inverse cascades, short correlated random
force imposes some degree of locality and yet conformal
invariance is a remarkable example of emerging symmetry
since our systems are dynamically nonlocal and far from
equilibrium. It remains an open question, here as in the
Navier-Stokes case, whether conformal invariance extends
to some field correlation functions, and how to identify
candidate primary fields upon which a conformal field
theory for the inverse cascade can be built.
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[3] G. Falkovich, K. Gawędzki, and M. Vergassola, Rev. Mod.

Phys. 73, 913 (2001).
[4] G. Boffetta et al., Phys. Rev. E 61, R29 (2000).
[5] P. Tabeling, Phys. Rep. 362, 1 (2002).
[6] A. Celani et al., Phys. Rev. Lett. 89, 234502 (2002).
[7] D. Bernard et al., Nature Phys. 2, 124 (2006).
[8] I. M. Held et al., J. Fluid Mech. 282, 1 (1995).
[9] O. Schramm and S. Sheffield, The Annals of Probability

33, 2127 (2005).
[10] J. Cardy, Ann. Phys. (N.Y.) 318, 81 (2005).
[11] M. Bauer and D. Bernard, Phys. Rep. 432, 115 (2006).
[12] R. T. Pierrehumbert, I. M. Held, and K. L. Swanson, Chaos

Solitons Fractals 4, 1111 (1994).
[13] N. Schorghofer, Phys. Rev. E 61, 6572 (2000).
[14] K. S. Smith et al., J. Fluid Mech. 469, 13 (2002).
[15] A. Celani et al., New J. Phys. 6, 72 (2004).
[16] J. Kondev and C. L. Henley, Phys. Rev. Lett. 74, 4580

(1995).
[17] B. Nienhuis, J. Stat. Phys. 34, 731 (1984).
[18] C. Amoruso et al., cond-mat/0601711.
[19] D. D. Holm and V. Putkaradze, Phys. Rev. Lett. 95,

226106 (2005).
[20] J. C. Charney, J. Atmos. Sci. 28, 1087 (1971);

A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978);
V. Larichev and J. McWilliams, Phys. Fluids 3, 938
(1991).

[21] J. Cardy and R. Ziff, J. Stat. Phys. 110, 1 (2003).
[22] J. Cardy, Phys. Rev. Lett. 84, 3507 (2000).
[23] G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).
[24] E. Balkovsky et al., JETP Lett. 61, 1012 (1995).
[25] M. Chertkov, I. Kolokolov, and M. Vergassola, Phys. Rev.

E 56, 5483 (1997).

 

(a)

 0
 0.5

 1
 1.5

 2

0 1 2 3 4
q

D
q

(b)

 0
 0.5

 1
 1.5

 2

0 1 2 3 4
q

D
q

FIG. 6. (a) A typical loop in SQG inverse cascade. Inset: gen-
eralized fractal dimensions Dq � �q� 1��1limr!1 lnZq�r�= lnr
where Zq�r� �

P
�i�r�q and the sum runs over a set of N�r�

nonoverlapping r boxes covering the curve, and�i�r� is the mass
of the curve inside the ith box. (b) A typical vorticity loop in the
direct cascade of 2D Navier-Stokes turbulence, obtained from a
pseudospectral simulation with 10242 lattice points. The spec-
trum of generalized dimensions shows a clear dependence on q
(multifractality). It decreases from the fractal dimension D0 

3=2 to reach values Dq 
 1 for large q, as a result of the
existence of long, almost 1D segments of the loops.
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