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Data Synchronization in a Network of Coupled Phase Oscillators
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We devised a new method of data mining for a large-scale database. In the method, a network of locally
coupled phase oscillators subject to Kuramoto’s model substitutes for given multivariate data to generate
major features through phase locking of the oscillators, i.e., phase transition of the data set. We applied the
method to the national database of care needs certification for the Japanese public long-term care
insurance program, and found three major patterns in the aging process of the frail elderly. This work
revealed the latent utility of Kuramoto’s model for data processing.
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In a society of mutual communication, individuals usu-
ally look for a consensus, despite their differences, and
opinions spontaneously converge into a few representative
ideas referred to as public opinion. This common phe-
nomenon residing in democratic societies might reflect
synchronization of individual neuronal entities with de-
grees of freedom. Inspired by this conjecture and recog-
nizing the social needs for using public databases of an
explosively growing scale thanks to recent progress in
computer science and information technology, we devised
a new method of data mining based on spontaneous data
clustering for a large-scale database. In the method, a
network of locally coupled limit-cycle phase oscillators
subject to an analogue of the Kuramoto model [1-4] sub-
stitutes for a set of multivariate data by encoding the data
vectors into the natural frequencies, yielding instantaneous
renewal of the data represented by the time derivatives of
the phase vectors. Local phase locking of the network
generates a few common frequency vectors that represent
major features of the data set. Information is represented
and processed by the oscillator’s rhythms. This might be
reminiscent of a version of a hypothesis for temporal
coding in synchronous electrical activity of neurons [5—
13], although the present method is not concerned with
neuroscience but involves phase transition in a large popu-
lation of data. Our method requires no initial templates to
generate patterns from data, unlike existing methods such
as self-organizing mapping [14]. Rather, the method is
based on the expectation that prototypical patterns lurk in
data themselves. We applied the method to the national
database for the Japanese public long-term care insurance
program, finding three major classes to categorize aging
status of the frail elderly.

Collective synchronization is the phenomenon that a
group of events spontaneously comes into occurrence in
unison with a common rhythm, despite differences in the
individual rhythms of the events, actually emerging in
many real-world networked systems. Following the pio-
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neering work by Winfree [15], Kuramoto established a firm
foundation of the physics underlying collective synchroni-
zation with a network of coupled limit-cycle phase oscil-
lators as a comprehensive and mathematically tractable
model to unravel the intriguing machinery [1]. As appre-
ciated by Mirollo and Strogatz [3], the Kuramoto model
was a breakthrough in nonlinear science. For instance, the
Kuramoto model has been applied to neuroscience to
provide new insights into the binding problem in vision,
i.e., the linking of sensory input across multiple receptive
fields, and information processing based on pulsatile elec-
trical activity of neurons [6,7,11,12]. This paper focused on
data clustering in a network of coupled phase oscillators.
Nevertheless, the present study might share with previous
literature on neuroscience the issue of how information
codes are processed in a synchronous dynamic system.

Our aim is expressed as ‘“let data find patterns by
themselves without any prior knowledge.” Given N multi-
variate data points with D degrees of freedom, X; =
(x;(1), ..., x;(D)) (i =1, ..., N), we devise, as an analogue
of the Kuramoto model, a network of coupled phase oscil-
lators to whose natural frequencies the data vectors X; are
encoded:

N
PH0) — )+ 2. Hid))sinte ) = 0. (1)
Here, K is a positive coupling constant and 6;(n) is the nth
component of the phase vector 5,- = (0,(1),...,0,D))
whose initial values can be set to random numbers. The
derivatives of 51- with respect to time are instantaneous
“frequency” vectors representing renewals of X;. We de-
sign the nonlinear interaction so as to work only between
neighboring phase vectors. The neighborhood of éi is
defined by a partitioning function H. Let us express the
distance as d; j = 1X; — %;|. We define the partitioning
function as H(d, ;) = 1if d;; = d, and H(d; ;) = 0, other-
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wise, with d, = a|%;| where « is an appropriate positive
constant. The partitioning function acts as a supervisor that
instructs the counterpart to couple, when viewing the time
evolution by the governing equations as learning processes.

Thus N; neighboring phase vectors of éi are fixed by the
statistical distribution of X;, as shown in Fig. 1. The inter-
action occurs within a distance of d,, that might be likened
to tolerance of an individual in persuading others having
different opinions.

To show that the dynamics inherit the local mean field
character, we define a local order parameter as

N
) expi(m) = 1 " Hd, ) explif,(m), ()
ij=1

= (r;(1),..., r;(D)) measures degrees of local
coherence and ; = (;(1), ..., ¥,(D)) is the local mean
field. Then Eq. (1) reads d6;(n)/dt = x;(n) + Kr;(n) X
sin[¢;(n) — 6;(n)]. Under appropriate settings of K and
a that guarantee Kr;(n) = |x;(n) — X,(n)| and a sufficient
number of neighbors in the neighborhood of X;, the phase
vectors will come into local synchrony to develop major
groups within which the members spontaneously lock to a
common frequency vector )?g = (X,(1),...,X,(D)) (g =

., Q; Q is the number of groups). These processes are
coined as data synchronization. We thus obtain template
vectors representing major features of the data.

The degree of synchrony in data synchronization should
be measured in terms of r;(n). In practical applications,
however, the mean diversity of frequency vectors over
synchronized clusters, denoted by o, may be more conve-
nient:

where 7;

1 N

N

Y- Z[ ZH(d,J) ”} 3)
i=1 l=1

where d, ; = |§,~ - 5j|. If N; = 0, o; is defined to be zero.

As perfect synchronization is achieved, o — 0. In the
opposite extreme where every X; initially has no neighbors

FIG. 1 (color). Neighborhood (gray sphere) of X; (black solid
arrow). Black dashed arrows are neighbors. Blue arrows are not
neighbors. The vertical angle ¢ between X; and its outermost
neighbor (red arrow) is defined as ¢ = sin~'(d/|%;]). When
a =07, ¢ =44.4°.

within a distance of d, the mean diversity o will keep
taking zero from the beginning of the time evolution of the
governing equations. We may be able to avert such perfect
desynchronization by increasing a.

We conducted a preliminary numerical experiment for
data clustering of multivariate data of 3 degrees of freedom
(D = 3). In this experiment, we supposed three groups to
each of which five data vectors should belong, given as
X=0+¢€c¢€e€), (6, 1+¢ € or (6, € 1+ €) with
Gaussian random numbers € of mean 0 and variance 0.1.
The initial values of éi were set to Gaussian random
numbers of mean O and variance 1. We ran the dynamics
of Eq. (1) with K = 0.4 and a = 0.5 at a time width of 0.05
to achieve perfect synchronization in each group. The
member vectors correctly converged to (1, 0, 0), (0, 1, 0),
or (0, 0, 1) and o decreased from 1.01 to O in 850 time
steps.

We next conducted a case study with a large database of
care needs certification in order to examine typical patterns
of aging status in the frail elderly. The history of the
database is briefly described below. Under the circumstan-
ces of rapid demographic aging with more and more frail
elderly seeking care, Japan implemented a mandatory
social long-term care insurance system in 2000 [16,17].
In this system, a client aged 65 or older who needs nursing
care services is given a basic questionnaire of 73 categories
to assess his or her health status and quality of life
(Table I). Since the start of the insurance system, question-
naire answers (multivariate data) have accumulated in the
Japanese national database, which currently consists of
about 25 X 10° cases. We used 12 sets of 2000 samples
randomly selected from the database. The samples yielded
the data vectors %; with 73 degrees of freedom, i.e., D =
73. Such immense dimensionality as well as the absence of
prior knowledge about the groups into which the multi-
variate data would be categorized made it difficult for
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FIG. 2. Mean diversity o as a function of time.
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TABLE I. Three major patterns of aging status in frail elderly. The first column is the basic questionnaire in relation to 73 categories
of disability. The second column is integer scores for answers. An integer score of “—1”" means ‘“‘healthy,” while integer scores of “1”’
through the maximum represent increasing degrees of seriousness in each category of disability. The third, fourth, and fifth columns
are estimated real scores defining the three major classes (classes 1, 2, and 3).

Questionnaire Score Class 1 Class 2 Class 3
1. Paralysis (left arm) =1, 1 -0.9 -0.9 -1
2. Paralysis (right arm) -1, 1 —-0.9 -0.9 -0.9
3. Paralysis (left leg) -1, 1 —-0.2 0 0.2
4. Paralysis (right leg) -1, 1 —0.2 —0.2 —0.4
5. Paralysis (other part of body) -1, 1 —0.8 —0.8 -0.9
6. Contracture (shoulder joints) -1, 1 —-0.8 -0.8 -0.7
7. Contracture (elbow joints) -1, 1 -0.9 -0.9 -0.8
8. Contracture (hip joints) -1, 1 —0.8 —0.8 —0.8
9. Contracture (knee joints) -1, 1 -0.3 -0.3 -0.3
10. Contracture (ankle joints) -1, 1 —-0.8 -0.9 -1
11. Contracture (other part of body) -1, 1 —-0.6 —0.6 —-0.6
12. Rolling over in bed -1, 1,2 -0.5 0.6 0.4
13. Sitting up in bed -1, 1,2 0.1 0.3 0.4
14. Sitting with both feet on floor -1,1,2, 3 —-0.7 0.4 0.6
15. Sitting without feet on floor -1,1,2,3 0 0.5 0.5
16. Standing on both feet -1, 1,2 -0.8 0.3 0.5
17. Walking -1, 1,2 0.6 0.6 0.6
18. Transferring -1,1,2, 3 0.6 0.7 0.7
19. Standing up from sitting position -1, 1,2 —0.6 1.5 1
20. Standing on 1 ft -1, 1,2 -0.9 -0.9 -0.8
21. Getting in and out bath -1,1,2,3 —-0.7 -0.7 —-0.6
22. Bathing -1, 1,23 —0.8 -0.8 -0.9
23. Bedsore (decubitus ulcer) -1, 1 —-0.9 -0.5 0.6
24. Other skin diseases -1, 1 —-0.9 —=0.1 0
25. Lifting one arm to the chest -1, 1,2 -0.9 -0.3 0.3
26. Swallowing -1, 1,2 -0.9 —0.2 1.4
27. Desire to urinate -1,1,2 -0.3 1.8 1.3
28. Desire to defecate -1, 1,2 -0.9 1.3 14
29. Management after urination -1,1,2, 3 -0.9 1.7 1.7
30. Management after defecation -1,1,2,3 -0.7 0.1 0.6
31. Taking meals (dietary intake) -1,1,2,3 -0.5 0.7 0.7
32. Oral hygiene (tooth brushing) -1, 1, 2 —-0.6 —-0.6 -0.7
33. Face washing -1, 1,2 -0.3 -0.3 -0.4
34. Hair care -1, 1,2 —-0.9 —-0.8 —-0.2
35. Nail cutting -1, 1,2 -0.9 -0.9 -1
36. Buttoning and unbuttoning clothing -1,1,2,3 —-0.9 —0.7 0.1
37. Putting on and taking off a jacket -1,1,2, 3 -0.9 -0.9 -0.9
38. Putting on and taking off trousers -1,1,2, 3 -0.9 -0.9 —-0.4
39. Putting on and taking off socks -1,1,2,3 -0.9 —-0.9 -0.8
40. Cleaning rooms -1, 1,2 -0.9 -0.9 -0.8
41. Taking medication -1, 1, 2 -0.9 -0.9 -0.9
42. Financial management -1, 1,2 -0.9 -0.9 -0.7
43. Serious memory loss -1,1,2 —-0.9 —-0.9 -0.9
44. Loss of interest in circumstances -1, 1, 2 -0.9 -0.9 —-0.8
45. Visual acuity -1,1,2, 3,4 -0.9 -0.9 —-0.8
46. Hearing -1,1,2 3,4 —0.8 —0.8 -0.8
47. Mutual communication -1,1,2, 3 -0.9 -0.9 —-0.8
48. Response to instructions -1, 1,2 -0.8 -0.9 -0.8
49. Understanding a daily schedule -1, 1 —-0.9 -0.9 —0.8
50. Answering date of birth and age -1, 1 -0.9 -0.9 —-0.4
51. Short-term memory -1, 1 -0.9 -0.9 -0.8
52. Remembering own name -1, 1 -0.9 -0.9 —-0.8
53. Recognition of current season -1, 1 —-0.9 -0.9 —-0.8
54. Orientation in place -1, 1 -0.9 -0.9 -0.8
55. Feeling persecuted -1, 1,2 —-0.9 -0.9 —-0.8
56. Fabricating stories -1, 1,2 —-0.8 -0.9 -0.9
57. Visual or auditory hallucinations -1, 1,2 -0.9 -0.9 -0.8
58. Emotional instability -1, 1,2 -0.9 -0.9 —-0.8
59. Reversion of day and night -1, 1, 2 -0.9 -0.9 —-0.8
60. Verbal or physical violence -1, 1,2 —0.4 —0.4 0.5
61. Repeating the same story -1, 1,2 -0.7 0.1 0.4
62. Shouting -1, 1,2 0 1.4 0.5
63. Resisting advice or care -1,1,2 -0.5 1.2 1.3
64. Poriomania -1, 1, 2 -0.9 -0.9 -0.9
65. Restlessness -1, 1,2 -0.9 —0.6 0.2
66. Being away from residence -1,1,2 -0.9 —-0.7 -0.3
67. Insisting on going out alone -1, 1,2 —0.8 0.6 1.8
68. Collecting mania -1,1,2 —-0.9 0.5 1.5
69. Inability to manage a fire -1, 1,2 -0.9 1.4 1.4
70. Destruction of things or clothes -1, 1,2 -0.9 1.5 1.7
71. Unsanitary behavior and living conditions -1,1,2 0.7 1 1.2
72. Pica (consumption of nonnutritive substances) -1, 1,2 -0.9 -0.9 14
73. Troublesome sexual behavior -1, 1, 2 -0.9 -0.9 -0.9
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existing methods of data clustering like self-organization
to work effectively. For each data set, we ran the dynamics
of Eq. (1) with K = 10 and a = 0.7 at a time width of 0.1.
Figure 2 shows typical results of the mean diversity o as a
function of time. In 20 time steps, partial phase locking
came about to generate three major groups. This tendency
was similar in each data set. The results are summarized in
Table 1. The major groups (classes 1, 2, and 3 in Table I)
comprised about 75% of the whole samples. The remaining
25% were out of synchrony or formed minor groups con-
sisting of a few members.

The main features of class 1 are impairment in the legs
and resultant functional limitations that affect activities of
daily living. This class of disability may be due to long-
term accumulation of mechanical load on the legs support-
ing the body weight. Such disability is likely to develop
with aging in legged animals with higher intelligence. For
class 3, besides progressive disability affecting the legs, its
distinctive features are related to the brain, in particular,
bowel or bladder control as well as mental disability con-
cerning basic activities necessary to reside in the commun-
ity. Interestingly, however, such mental disability, as
associated with processing of sensory information such
as vision and hearing, does not seem to be very important.
Rather, deterioration of intellectual ability such as hypo-
frontality is noticeable, which is unlikely to come from
long-term accumulation of working load in the brain. It is
an interesting question as to whether or not such mental
disability exists in other primates with higher intellectual
abilities. Class 2 is a less progressive version of class 3,
which appears to be midway between class 1 to class 3. The
present data clustering may capture universal features of
the aging process. We conjecture that there may be a major
path in aging, starting from physical disability in the legs,
represented by class 1 (doddering), through an intermedi-
ate status of class 2 (dotage), to the complication of mental
disability of class 3 (senility) resulting in serious deterio-
ration of quality of social life. The isolated vectors out of
synchrony and the minor groups of vectors could have been
classified into other possible major groups that would have
come out if many more samples were able to be handled.
They may represent the idiosyncratic status of aging to
reflect complexity and variety in human aging processes.

In conclusion, we devised dynamics for a network of
coupled phase oscillators that substitutes an ensemble of
multivariate data. Extracting general features from the data
set was performed by phase locking of the oscillators, i.e.,

phase transition in the ensemble of data. The present Letter
suggests that collective synchronization as a physical pro-
cess occurring in a bounded nonlinear system can play the
role of data clustering in a process of learning and general-
ization from sparse multivariate data. Since the Kuramoto
model is an outcome of the perturbation method, referred
to as method I in [1], for reaction-diffusion systems, dif-
fusive coupling between physical entities carrying particu-
lar information might be necessary to generalize the
acquired information in living computational systems.
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